Heiko Reith

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7976782/heiko-reith-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 40 14 755 h-index g-index citations papers 7.8 47 947 3.92 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
40	Study of the Annealing Effects of Sputtered Bi 2 Te 3 Thin Films with Full Thermoelectric Figure of Merit Characterization. <i>Physica Status Solidi - Rapid Research Letters</i> , 2022 , 16, 2100533	2.5	O
39	Geometrical Optimization and Thermal-Stability Characterization of Te-Free Thermoelectric Modules Based on MgAgSb/Mg (Bi,Sb) <i>Small</i> , 2022 , e2201183	11	3
38	Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion. <i>Advanced Energy Materials</i> , 2021 , 11, 2101213	21.8	3
37	Low-temperature thermal conductivity of thermoelectric Co1M Si (M屆 Fe, Ni) alloys. <i>Materials Today Energy</i> , 2021 , 20, 100666	7	3
36	Influence of Nanoparticle Processing on the Thermoelectric Properties of (Bi Sb) Te Ternary Alloys. <i>ChemistryOpen</i> , 2021 , 10, 189-198	2.3	2
35	Towards tellurium-free thermoelectric modules for power generation from low-grade heat. <i>Nature Communications</i> , 2021 , 12, 1121	17.4	36
34	High-Performance n-Type Ge-Free Silicon Thermoelectric Material from Silicon Waste. <i>ACS Applied Materials & Mater</i>	9.5	2
33	Interface-Dominated Topological Transport in Nanograined Bulk Bi Te. Small, 2021, 17, e2103281	11	2
32	Thermoelectric Characterization Platform for Electrochemically Deposited Materials. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901288	6.4	3
31	Doping High-Mobility Donor Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900945	6.4	22
30	Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900857	6.4	3
29	Thermoelectric properties of Au and Ti nanofilms, characterized with a novel measurement platform. <i>Materials Today: Proceedings</i> , 2019 , 8, 517-522	1.4	2
28	Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization-Delocalization Transition in n-Type Bi-Doped PbTe/AgTe Nanocomposite. <i>ACS Nano</i> , 2019 , 13, 3806-3815	16.7	48
27	Thermoelectric properties of silicides with topologically non-trivial electronic structure: Co1-xMxSi (M=Fe, Ni). <i>Materials Today: Proceedings</i> , 2019 , 8, 540-545	1.4	4
26	Design Guidelines for Micro-Thermoelectric Devices by Finite Element Analysis. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800093	5.9	3
25	Complete Thermoelectric Characterization of PEDOT:PSS Thin Films with a Novel ZT Test Chip Platform. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1700930	1.6	12
24	Polyethenetetrathiolate or polytetrathiooxalate? Improved synthesis, a comparative analysis of a prominent thermoelectric polymer and implications to the charge transport mechanism. <i>Polymer Chemistry</i> , 2018 , 9, 4543-4555	4.9	12

(2010-2018)

23	Analytical Investigation of the Limits for the In-Plane Thermal Conductivity Measurement Using a Suspended Membrane Setup. <i>Journal of Electronic Materials</i> , 2018 , 47, 3203-3209	1.9	8
22	Electronic Structure and Thermoelectric Properties of Transition Metal Monosilicides. <i>Journal of Electronic Materials</i> , 2018 , 47, 3277-3281	1.9	14
21	Integrated microthermoelectric coolers with rapid response time and high device reliability. <i>Nature Electronics</i> , 2018 , 1, 555-561	28.4	41
20	Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. <i>Nanotechnology</i> , 2017 , 28, 065709	3.4	19
19	Transport properties of cobalt monosilicide and its alloys at low temperatures. <i>Semiconductors</i> , 2017 , 51, 689-691	0.7	14
18	Fabrication and Modeling of Integrated Micro-Thermoelectric Cooler by Template-Assisted Electrochemical Deposition. <i>ECS Journal of Solid State Science and Technology</i> , 2017 , 6, N3022-N3028	2	12
17	Ternary, single-crystalline Bi2 (Te, Se)3 nanowires grown by electrodeposition. <i>Acta Materialia</i> , 2017 , 125, 238-245	8.4	11
16	Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 494007	3	5
15	Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr). <i>Materials Today Physics</i> , 2017 , 1, 24-30	8	110
14	Berry phase and band structure analysis of the Weyl semimetal NbP. Scientific Reports, 2016 , 6, 33859	4.9	29
13	The surface-to-volume ratio: a key parameter in the thermoelectric transport of topological insulator Bi2Se3 nanowires. <i>Nanoscale</i> , 2016 , 8, 13552-7	7.7	21
12	Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K. <i>Journal of Materials Research</i> , 2016 , 31, 3196-3204	2.5	21
11	Low temperature annealing effects on the stability of Bi nanowires. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 603-609	1.6	5
10	Fabrication and thermoelectrical characterization of three-dimensional nanowire networks. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 610-619	1.6	12
9	One-dimensional edge transport on the surface of cylindrical BixTe3 Sey nanowires in transverse magnetic fields. <i>Applied Physics Letters</i> , 2015 , 107, 181602	3.4	11
8	Catalytic purification of directly written nanostructured Pt microelectrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 15868-74	9.5	32
7	Influence of irradiation-induced disorder on the Peierls transition in TTFIICNQ microdomains. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 385301	3	4
6	A tunable strain sensor using nanogranular metals. <i>Sensors</i> , 2010 , 10, 9847-56	3.8	92

5	Microchips for the Investigation of Thermal and Electrical Properties of Individual Nanowires. Journal of Electronic Materials, 2010 , 39, 1950-1956	1.9	18
4	Transport measurements on microcrystals of oriented CeIn3 and CeCoIn5 thin films. <i>Thin Solid Films</i> , 2010 , 518, 7064-7069	2.2	3
3	The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. <i>Nanotechnology</i> , 2009 , 20, 325706	3.4	102
2	Geometric Study of Polymer Embedded Micro Thermoelectric Cooler with Optimized Contact Resistance. <i>Advanced Electronic Materials</i> ,2101042	6.4	1
1	Crystal Structure Analysis and Magneto-Transport Investigation of Co 1 \mathbb{R} Fe x Si (with x \square = 0% to x \square = 20%). Advanced Electronic Materials.2101081	6.4	