
Vickie S Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7976532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fifteen Years after "Wingspreadâ€â€"Environmental Endocrine Disrupters and Human and Wildlife Health: Where We are Today and Where We Need to Go. Toxicological Sciences, 2008, 105, 235-259.	3.1	408
2	A Mixture of Five Phthalate Esters Inhibits Fetal Testicular Testosterone Production in the Sprague-Dawley Rat in a Cumulative, Dose-Additive Manner. Toxicological Sciences, 2008, 105, 153-165.	3.1	370
3	Effects of the androgenic growth promoter 17â€Î²â€ŧrenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environmental Toxicology and Chemistry, 2003, 22, 1350-1360.	4.3	352
4	A Novel Cell Line, MDA-kb2, That Stably Expresses an Androgen- and Glucocorticoid-Responsive Reporter for the Detection of Hormone Receptor Agonists and Antagonists. Toxicological Sciences, 2002, 66, 69-81.	3.1	296
5	Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals1. Journal of Developmental and Physical Disabilities, 2006, 29, 96-104.	3.6	282
6	Development and Characterization of a Cell Line That Stably Expresses an Estrogen-Responsive Luciferase Reporter for the Detection of Estrogen Receptor Agonist and Antagonists. Toxicological Sciences, 2004, 81, 69-77.	3.1	253
7	Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicology Letters, 2004, 146, 207-215.	0.8	252
8	Cumulative Effects of Dibutyl Phthalate and Diethylhexyl Phthalate on Male Rat Reproductive Tract Development: Altered Fetal Steroid Hormones and Genes. Toxicological Sciences, 2007, 99, 190-202.	3.1	239
9	Mechanisms of action of phthalate esters, individually and in combination, to induce abnormal reproductive development in male laboratory rats. Environmental Research, 2008, 108, 168-176.	7.5	224
10	Effects of Two Fungicides with Multiple Modes of Action on Reproductive Endocrine Function in the Fathead Minnow (Pimephales promelas). Toxicological Sciences, 2005, 86, 300-308.	3.1	187
11	Dose-Response Assessment of Fetal Testosterone Production and Gene Expression Levels in Rat Testes Following InUtero Exposure to Diethylhexyl Phthalate, Diisobutyl Phthalate, Diisoheptyl Phthalate, and Diisononyl Phthalate. Toxicological Sciences, 2011, 123, 206-216.	3.1	187
12	Comparison of Five in Vitro Bioassays to Measure Estrogenic Activity in Environmental Waters. Environmental Science & Technology, 2010, 44, 3853-3860.	10.0	176
13	A mixture of seven antiandrogens induces reproductive malformations in rats. Journal of Developmental and Physical Disabilities, 2008, 31, 249-262.	3.6	173
14	Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of the Total Environment, 2017, 581-582, 909-922.	8.0	155
15	Identification of Metabolites of Trenbolone Acetate in Androgenic Runoff from a Beef Feedlot. Environmental Health Perspectives, 2006, 114, 65-68.	6.0	152
16	Gestational and Lactational Exposure to Ethinyl Estradiol, but not Bisphenol A, Decreases Androgen-Dependent Reproductive Organ Weights and Epididymal Sperm Abundance in the Male Long Evans Hooded Rat. Toxicological Sciences, 2008, 102, 371-382.	3.1	148
17	In Vitro and in Vivo Effects of 17beta-Trenbolone: A Feedlot Effluent Contaminant. Toxicological Sciences, 2002, 70, 202-211.	3.1	121
18	Diverse mechanisms of antiâ€androgen action: impact on male rat reproductive tract development. Journal of Developmental and Physical Disabilities, 2008, 31, 178-187.	3.6	115

#	Article	IF	CITATIONS
19	A Short-term In Vivo Screen Using Fetal Testosterone Production, a Key Event in the Phthalate Adverse Outcome Pathway, to Predict Disruption of Sexual Differentiation. Toxicological Sciences, 2014, 140, 403-424.	3.1	115
20	Adverse Maternal, Fetal, and Postnatal Effects of Hexafluoropropylene Oxide Dimer Acid (GenX) from Oral Gestational Exposure in Sprague-Dawley Rats. Environmental Health Perspectives, 2019, 127, 37008.	6.0	109
21	Pubertal Administration of DEHP Delays Puberty, Suppresses Testosterone Production, and Inhibits Reproductive Tract Development in Male Sprague-Dawley and Long-Evans Rats. Toxicological Sciences, 2009, 111, 163-178.	3.1	103
22	Cumulative Effects of In Utero Administration of Mixtures of "Antiandrogens―on Male Rat Reproductive Development. Toxicologic Pathology, 2009, 37, 100-113.	1.8	98
23	Occurrence and In Vitro Bioactivity of Estrogen, Androgen, and Glucocorticoid Compounds in a Nationwide Screen of United States Stream Waters. Environmental Science & Technology, 2017, 51, 4781-4791.	10.0	93
24	Late Gestational Exposure to the Fungicide Prochloraz Delays the Onset of Parturition and Causes Reproductive Malformations in Male but Not Female Rat Offspring1. Biology of Reproduction, 2005, 72, 1324-1335.	2.7	92
25	Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency. Toxicological Sciences, 2012, 125, 544-557.	3.1	86
26	Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Science of the Total Environment, 2017, 579, 1610-1617.	8.0	86
27	Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat. Environment International, 2021, 146, 106204.	10.0	80
28	Evaluation of androstenedione as an androgenic component of river water downstream of a pulp and paper mill effluent. Environmental Toxicology and Chemistry, 2002, 21, 1973-1976.	4.3	74
29	Evaluation of the Model Anti-androgen Flutamide for Assessing the Mechanistic Basis of Responses to an Androgen in the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2004, 38, 6322-6327.	10.0	73
30	ldentification of Estrogenic Compounds Emitted from the Combustion of Computer Printed Circuit Boards in Electronic Waste. Environmental Science & Technology, 2007, 41, 8506-8511.	10.0	68
31	Prochloraz Inhibits Testosterone Production at Dosages below Those that Affect Androgen-Dependent Organ Weights or the Onset of Puberty in the Male Sprague Dawley Rat. Toxicological Sciences, 2007, 97, 65-74.	3.1	62
32	Pesticides: multiple mechanisms of demasculinization. Molecular and Cellular Endocrinology, 1997, 126, 1-5.	3.2	61
33	Competitive binding comparison of endocrineâ€disrupting compounds to recombinant androgen receptor from fathead minnow, rainbow trout, and human. Environmental Toxicology and Chemistry, 2007, 26, 1793-1802.	4.3	61
34	Endosulfan Elevates Testosterone Biotransformation and Clearance in CD-1 Mice. Toxicology and Applied Pharmacology, 1998, 148, 158-168.	2.8	60
35	Environmental Gestagens Activate Fathead Minnow (<i>Pimephales promelas</i>) Nuclear Progesterone and Androgen Receptors <i>in Vitro</i> . Environmental Science & Technology, 2014, 48, 8179-8187.	10.0	58
36	Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environmental Toxicology and Chemistry, 2003, 22, 1350-60.	4.3	57

#	Article	IF	CITATIONS
37	The herbicide linuron reduces testosterone production from the fetal rat testis during both in utero and in vitro exposuresa~†. Toxicology Letters, 2009, 186, 73-77.	0.8	55
38	Dipentyl Phthalate Dosing during Sexual Differentiation Disrupts Fetal Testis Function and Postnatal Development of the Male Sprague-Dawley Rat with Greater Relative Potency than Other Phthalates. Toxicological Sciences, 2011, 120, 184-193.	3.1	54
39	Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats. Toxicological Sciences, 2015, 148, 488-502.	3.1	54
40	Iprodione delays male rat pubertal development, reduces serum testosterone levels, and decreases ex vivo testicular testosterone productionâ~†. Toxicology Letters, 2007, 174, 74-81.	0.8	53
41	Cloning and In Vitro Expression and Characterization of the Androgen Receptor and Isolation of Estrogen Receptor α from the Fathead Minnow (Pimephales promelas). Environmental Science & Technology, 2004, 38, 6314-6321.	10.0	52
42	Sensitivity of Fetal Rat Testicular Steroidogenesis to Maternal Prochloraz Exposure and the Underlying Mechanism of Inhibition. Toxicological Sciences, 2007, 97, 512-519.	3.1	49
43	Mixed "Antiandrogenic―Chemicals at Low Individual Doses Produce Reproductive Tract Malformations in the Male Rat. Toxicological Sciences, 2018, 164, 166-178.	3.1	49
44	Differential expression of the phthalate syndrome in male Sprague–Dawley and Wistar rats after in utero DEHP exposure. Toxicology Letters, 2007, 170, 177-184.	0.8	47
45	Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment. Toxicology and Applied Pharmacology, 2013, 271, 299-308.	2.8	47
46	A Demonstration of the Uncertainty in Predicting the Estrogenic Activity of Individual Chemicals and Mixtures From an <i>In Vitro</i> Estrogen Receptor Transcriptional Activation Assay (T47D-KBluc) to the <i>In Vivo</i> Uterotrophic Assay Using Oral Exposure. Toxicological Sciences, 2016, 153, 382-395.	3.1	46
47	Modeling the Interaction of Binary and Ternary Mixtures of Estradiol with Bisphenol A and Bisphenol AF in an In Vitro Estrogen-Mediated Transcriptional Activation Assay (T47D-KBluc). Toxicological Sciences, 2010, 116, 477-487.	3.1	44
48	Cumulative and Antagonistic Effects of a Mixture of the Antiandrogens Vinclozolin and Iprodione in the Pubertal Male Rat. Toxicological Sciences, 2009, 111, 179-188.	3.1	43
49	Use of genomic data in risk assessment case study: II. Evaluation of the dibutyl phthalate toxicogenomic data set. Toxicology and Applied Pharmacology, 2013, 271, 349-362.	2.8	41
50	Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. Environmental Science & Technology, 2018, 52, 13972-13985.	10.0	41
51	Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. Environmental Toxicology and Chemistry, 2014, 33, 1849-1857.	4.3	40
52	Establishing the "Biological Relevance―of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels. Toxicological Sciences, 2016, 149, 178-191.	3.1	34
53	Simvastatin and Dipentyl Phthalate Lower Ex Vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat. Toxicological Sciences, 2014, 141, 524-537.	3.1	33
54	A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. Environment International, 2021, 156, 106615.	10.0	33

#	Article	IF	CITATIONS
55	Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. Science of the Total Environment, 2020, 719, 137236.	8.0	32
56	DNA Arrays to Monitor Gene Expression in Rat Blood and Uterus following 17beta-Estradiol Exposure: Biomonitoring Environmental Effects Using Surrogate Tissues. Toxicological Sciences, 2002, 69, 49-59.	3.1	30
57	Characterization of the androgenâ€sensitive MDAâ€kb2 cell line for assessing complex environmental mixtures. Environmental Toxicology and Chemistry, 2010, 29, 1367-1376.	4.3	30
58	Of Mice and Men (and Mosquitofish): Antiandrogens and Androgens in the Environment. BioScience, 2008, 58, 1037-1050.	4.9	27
59	De Facto Water Reuse: Bioassay suite approach delivers depth and breadth in endocrine active compound detection. Science of the Total Environment, 2020, 699, 134297.	8.0	24
60	COMPARISON OF CHEMICAL BINDING TO RECOMBINANT FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTORS ALPHA IN WHOLE CELL AND CELL-FREE BINDING ASSAYS. Environmental Toxicology and Chemistry, 2009, 28, 2175.	4.3	23
61	Modelling defined mixtures of environmental oestrogens found in domestic animal and sewage treatment effluents using an in vitro oestrogenâ€mediated transcriptional activation assay (T47Dâ€KBluc). Journal of Developmental and Physical Disabilities, 2012, 35, 397-406.	3.6	23
62	Toxicant-Induced Hypospadias in the Male Rat. Advances in Experimental Medicine and Biology, 2004, 545, 217-241.	1.6	21
63	Gene expression analysis in the ventral prostate of rats exposed to vinclozolin or procymidone. Reproductive Toxicology, 2005, 19, 367-379.	2.9	20
64	Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. Environment International, 2021, 152, 106487.	10.0	18
65	Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring Environmental Science & Technology, 2015, 49, 13906-13907.	10.0	17
66	Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. Science of the Total Environment, 2021, 788, 147721.	8.0	17
67	Development of a competitive binding assay system with recombinant estrogen receptors from multiple species. Toxicology Letters, 2009, 184, 85-89.	0.8	15
68	Assessment of a robust model protocol with accelerated throughput for a human recombinant full length estrogen receptor-α binding assay: Protocol optimization and intralaboratory assay performance as initial steps towards validation. Reproductive Toxicology, 2010, 30, 50-59.	2.9	15
69	Differences in sensitivity but not selectivity of xenoestrogen binding to alligator versus human estrogen receptor alpha. Environmental Toxicology and Chemistry, 2010, 29, 2064-2071.	4.3	15
70	A Conflicted Tale of Two Novel AR Antagonists In Vitro and In Vivo: Pyrifluquinazon Versus Bisphenol C. Toxicological Sciences, 2019, 168, 632-643.	3.1	14
71	EFFECTS OF THE ANDROGENIC GROWTH PROMOTER $17 \cdot \hat{1}^2$ -TRENBOLONE ON FECUNDITY AND REPRODUCTIVE ENDOCRINOLOGY OF THE FATHEAD MINNOW. Environmental Toxicology and Chemistry, 2003, 22, 1350.	4.3	13
72	DETECTION OF ANDROGENIC ACTIVITY IN EMISSIONS FROM DIESEL FUEL AND BIOMASS COMBUSTION. Environmental Toxicology and Chemistry, 2006, 25, 2123.	4.3	12

#	Article	IF	CITATIONS
73	Generalized Concentration Addition Model Predicts Glucocorticoid Activity Bioassay Responses to Environmentally Detected Receptor-Ligand Mixtures. Toxicological Sciences, 2019, 168, 252-263.	3.1	12
74	In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Science of the Total Environment, 2021, 768, 144750.	8.0	11
75	Evaluation of androstenedione as an androgenic component of river water downstream of a pulp and paper mill effluent. Environmental Toxicology and Chemistry, 2002, 21, 1973-6.	4.3	10
76	Predictive Analysis Using Chemical-Gene Interaction Networks Consistent with Observed Endocrine Activity and Mutagenicity of U.S. Streams. Environmental Science & Technology, 2019, 53, 8611-8620.	10.0	9
77	Genomic and Hormonal Biomarkers of Phthalate-Induced Male Rat Reproductive Developmental Toxicity Part II: A Targeted RT-qPCR Array Approach That Defines a Unique Adverse Outcome Pathway. Toxicological Sciences, 2021, 182, 195-214.	3.1	9
78	In utero exposure to simvastatin reduces postnatal survival and permanently alters reproductive tract development in the Crl:CD(SD) male rat. Toxicology and Applied Pharmacology, 2019, 365, 112-123.	2.8	8
79	Quantification of the Uncertainties in Extrapolating From In Vitro Androgen Receptor Antagonism to In Vivo Hershberger Assay Endpoints and Adverse Reproductive Development in Male Rats. Toxicological Sciences, 2020, 176, 297-311.	3.1	6
80	EVALUATION OF ANDROSTENEDIONE AS AN ANDROGENIC COMPONENT OF RIVER WATER DOWNSTREAM OF A PULP AND PAPER MILL EFFLUENT. Environmental Toxicology and Chemistry, 2002, 21, 1973.	4.3	5
81	Environmental Androgens and Antiandrogens. , 2004, , 313-343.		0
82	The U.S. EPA Endocrine Disruptor Screening Program. , 2005, , 489-523.		0