
Yue Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975519/publications.pdf Version: 2024-02-01

VIIE SHEN

#	Article	IF	CITATIONS
1	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	3.0	1,877
2	THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III. Astronomical Journal, 2013, 145, 10.	1.9	1,571
3	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	3.0	1,158
4	A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7. Astrophysical Journal, Supplement Series, 2011, 194, 45.	3.0	1,104
5	THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astrophysical Journal, Supplement Series, 2014, 211, 17.	3.0	820
6	THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE. Astronomical Journal, 2010, 139, 2360-2373.	1.9	800
7	Biases in Virial Black Hole Masses: An SDSS Perspective. Astrophysical Journal, 2008, 680, 169-190.	1.6	441
8	The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release. Astronomical Journal, 2007, 134, 102-117.	1.9	394
9	UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C IV EMISSION. Astronomical Journal, 2011, 141, 167.	1.9	321
10	Clustering of High-Redshift (z≥ 2.9) Quasars from the Sloan Digital Sky Survey. Astronomical Journal, 2007, 133, 2222-2241.	1.9	315
11	A CATALOG OF BROAD ABSORPTION LINE QUASARS IN SLOAN DIGITAL SKY SURVEY DATA RELEASE 5. Astrophysical Journal, 2009, 692, 758-777.	1.6	315
12	The diversity of quasars unified by accretion and orientation. Nature, 2014, 513, 210-213.	13.7	279
13	SPACE DENSITY OF OPTICALLY SELECTED TYPE 2 QUASARS. Astronomical Journal, 2008, 136, 2373-2390.	1.9	247
14	A real-time fast radio burst: polarization detection and multiwavelength follow-up. Monthly Notices of the Royal Astronomical Society, 2015, 447, 246-255.	1.6	236
15	THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT zÂ>Â5.7. Astrophysical Journal, 2016, 833, 222.	1.6	225
16	COMPARING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS. Astrophysical Journal, 2012, 753, 125.	1.6	210
17	CLUSTERING OF LOW-REDSHIFT (<i>z</i> ⩽ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2009, 697, 1634-1655.	1.6	209
18	QUASAR CLUSTERING FROM SDSS DR5: DEPENDENCES ON PHYSICAL PROPERTIES. Astrophysical Journal, 2009, 697, 1656-1673.	1.6	191

#	Article	IF	CITATIONS
19	THE <i>z</i> = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82. Astrophysical Journal, 2013, 768, 105.	1.6	181
20	The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey. Monthly Notices of the Royal Astronomical Society, 2012, 424, 933-950.	1.6	171
21	THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE. Astrophysical Journal, 2013, 773, 14.	1.6	170
22	The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry. Astrophysical Journal, 2017, 851, 21.	1.6	168
23	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW. Astrophysical Journal, Supplement Series, 2015, 216, 4.	3.0	151
24	TYPE 2 ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED [O III] LINES: NARROW-LINE REGION KINEMATICS OR MERGING SUPERMASSIVE BLACK HOLE PAIRS?. Astrophysical Journal, 2010, 708, 427-434.	1.6	140
25	On the Eccentricity Distribution of Exoplanets from Radial Velocity Surveys. Astrophysical Journal, 2008, 685, 553-559.	1.6	139
26	TYPE 2 ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED [O III] LINES. II. SINGLE AGNS WITH COMPLEX NARROW-LINE REGION KINEMATICS ARE MORE COMMON THAN BINARY AGNS. Astrophysical Journal, 2011, 735, 48.	1.6	137
27	THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS. Astrophysical Journal, 2013, 764, 45.	1.6	135
28	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES. Astrophysical Journal, 2016, 831, 7.	1.6	134
29	Now you see it, now you don't: the disappearing central engine of the quasar J1011+5442. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1691-1701.	1.6	131
30	DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI. Astrophysical Journal Letters, 2010, 715, L30-L34.	3.0	125
31	HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES. Astrophysical Journal, 2009, 699, 782-799.	1.6	121
32	BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE. Astrophysical Journal, 2013, 777, 168.	1.6	121
33	X-RAY INSIGHTS INTO THE NATURE OF PHL 1811 ANALOGS AND WEAK EMISSION-LINE QUASARS: UNIFICATION WITH A GEOMETRICALLY THICK ACCRETION DISK?. Astrophysical Journal, 2015, 805, 122.	1.6	119
34	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE HÎ ² AND Mg ii LAGS AT zÂâ‰3Â0.3 FROM SIX-MONTH SPECTROSCOPY. Astrophysical Journal, 2016, 818, 30.	1.6	116
35	Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2780-2799.	1.6	115
36	Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7. Astrophysical Journal, 2019, 873, 35.	1.6	115

Yue Shen

#	Article	IF	CITATIONS
37	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. I. THE FREQUENCY ON â ⁻¹ /45-100 kpc SCALES. Astrophysical Journal, 2011, 737, 101.	1.6	107
38	BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE. Astrophysical Journal, 2012, 757, 114.	1.6	107
39	TOWARD AN UNDERSTANDING OF CHANGING-LOOK QUASARS: AN ARCHIVAL SPECTROSCOPIC SEARCH IN SDSS. Astrophysical Journal, 2016, 826, 188.	1.6	106
40	BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT <i>z</i> â ¹ /4 3-4. Astrophysical Journal, 2010, 719, 1672-1692.	1.6	105
41	IDENTIFYING SUPERMASSIVE BLACK HOLE BINARIES WITH BROAD EMISSION LINE DIAGNOSIS. Astrophysical Journal, 2010, 725, 249-260.	1.6	105
42	The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization. Astrophysical Journal, Supplement Series, 2019, 241, 34.	3.0	102
43	THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. I. TESTING FWHM-BASED VIRIAL BLACK HOLE MASSES. Astrophysical Journal, 2012, 746, 169.	1.6	98
44	Modeling Porous Dust Grains with Ballistic Aggregates. I. Geometry and Optical Properties. Astrophysical Journal, 2008, 689, 260-275.	1.6	93
45	Dust-free quasars in the early Universe. Nature, 2010, 464, 380-383.	13.7	91
46	CROSS-CORRELATION OF SDSS DR7 QUASARS AND DR10 BOSS GALAXIES: THE WEAK LUMINOSITY DEPENDENCE OF QUASAR CLUSTERING AT <i>z</i>	1.6	88
47	<i>CHANDRA</i> X-RAY AND <i>HUBBLE SPACE TELESCOPE</i> MAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES. Astrophysical Journal, 2013, 762, 110.	1.6	88
48	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: NO EVIDENCE FOR EVOLUTION IN THE \${{M}_{ullet }}-{{sigma }_{*}}\$ RELATION TO \$zsim 1\$. Astrophysical Journal, 2015, 805, 96.	1.6	88
49	Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey. Astrophysical Journal, 2018, 854, 160.	1.6	87
50	SUPERMASSIVE BLACK HOLES IN THE HIERARCHICAL UNIVERSE: A GENERAL FRAMEWORK AND OBSERVATIONAL TESTS. Astrophysical Journal, 2009, 704, 89-108.	1.6	86
51	Threeâ€dimensional Compressible Hydrodynamic Simulations of Vortices in Disks. Astrophysical Journal, 2006, 653, 513-524.	1.6	84
52	CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION. Astrophysical Journal, 2013, 775, 49.	1.6	75
53	X-ray spectral properties of the AGN sample in the northern XMM-XXL field. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1602-1625.	1.6	71
54	MODELING POROUS DUST GRAINS WITH BALLISTIC AGGREGATES. II. LIGHT SCATTERING PROPERTIES. Astrophysical Journal, 2009, 696, 2126-2137.	1.6	69

#	Article	IF	CITATIONS
55	CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. II. THE POPULATION WITH KINEMATICALLY OFFSET BROAD BALMER EMISSION LINES. Astrophysical Journal, 2014, 789, 140.	1.6	68
56	The Sloan Digital Sky Survey Reverberation Mapping Project: Initial C ivÂLag Results from Four Years of Data. Astrophysical Journal, 2019, 887, 38.	1.6	67
57	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION. Astrophysical Journal, 2012, 745, 94.	1.6	64
58	The Limited Impact of Outflows: Integral-field Spectroscopy of 20 Local AGNs. Astrophysical Journal, 2017, 837, 91.	1.6	64
59	THE IMPACT OF THE UNCERTAINTY IN SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES ON THE OBSERVED EVOLUTION OF THE BLACK HOLE-BULGE SCALING RELATIONS. Astrophysical Journal, 2010, 713, 41-45.	1.6	63
60	REST-FRAME OPTICAL PROPERTIES OF LUMINOUS 1.5Â<ÂZÂ<Â3.5 QUASARS: THE Hβ-[O iii] REGION. Astrophysical Journal, 2016, 817, 55.	1.6	61
61	The Sloan Digital Sky Survey Reverberation Mapping Project: Estimating Masses of Black Holes in Quasars with Single-epoch Spectroscopy. Astrophysical Journal, 2020, 903, 112.	1.6	61
62	THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS. Astrophysical Journal, 2012, 755, 30.	1.6	60
63	IR-derived covering factors for a large sample of quasars from WISE–UKIDSS–SDSS. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1494-1501.	1.6	58
64	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY. Astrophysical Journal, 2015, 806, 111.	1.6	57
65	A characteristic optical variability time scale in astrophysical accretion disks. Science, 2021, 373, 789-792.	6.0	55
66	The Sloan Digital Sky Survey Reverberation Mapping Project: Mg iiÂLag Results from Four Years of Monitoring. Astrophysical Journal, 2020, 901, 55.	1.6	54
67	BINARY QUASARS AT HIGH REDSHIFT. II. SUB-Mpc CLUSTERING AT <i>z</i> â ¹ /4 3-4. Astrophysical Journal, 2010, 719, 1693-1698.	1.6	52
68	ON THE POPULATIONS OF RADIO GALAXIES WITH EXTENDED MORPHOLOGY AT <i>z</i> < 0.3. Astrophysical Journal, 2010, 723, 1119-1138.	1.6	51
69	Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves. Astrophysical Journal, 2017, 836, 186.	1.6	50
70	THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS. Astrophysical Journal, 2015, 806, 244.	1.6	49
71	SDSS J0159+0105: A RADIO-QUIET QUASAR WITH A CENTI-PARSEC SUPERMASSIVE BLACK HOLE BINARY CANDIDATE*. Astrophysical Journal, 2016, 827, 56.	1.6	49
72	A giant protocluster of galaxies at redshift 5.7. Nature Astronomy, 2018, 2, 962-966.	4.2	48

#	Article	IF	CITATIONS
73	THE DEPENDENCE OF C IV BROAD ABSORPTION LINE PROPERTIES ON ACCOMPANYING SI IV AND AI III ABSORPTION: RELATING QUASAR-WIND IONIZATION LEVELS, KINEMATICS, AND COLUMN DENSITIES. Astrophysical Journal, 2014, 791, 88.	1.6	45
74	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: ENSEMBLE SPECTROSCOPIC VARIABILITY OF QUASAR BROAD EMISSION LINES. Astrophysical Journal, 2015, 811, 42.	1.6	45
75	DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES. Astrophysical Journal Letters, 2015, 804, L15.	3.0	45
76	The Sloan Digital Sky Survey Reverberation Mapping Project: Low-ionization Broad-line Widths and Implications for Virial Black Hole Mass Estimation. Astrophysical Journal, 2019, 882, 4.	1.6	44
77	Envelope expansion with core collapse - I. Spherical isothermal similarity solutions. Monthly Notices of the Royal Astronomical Society, 2004, 348, 717-734.	1.6	43
78	Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy – III. Candidates from continued radial velocity tests. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3288-3307.	1.6	42
79	The Sloan Digital Sky Survey Reverberation Mapping Project: The HβÂRadius–Luminosity Relation. Astrophysical Journal, 2020, 899, 73.	1.6	41
80	The Sloan Digital Sky Survey Reverberation Mapping Project: Accretion Disk Sizes from Continuum Lags. Astrophysical Journal, 2019, 880, 126.	1.6	40
81	Differences in the AGN Populations of Groups and Clusters: Clues to AGN Evolution. Astrophysical Journal, 2007, 654, L115-L118.	1.6	39
82	The evolution of chemical abundance in quasar broad line region. Monthly Notices of the Royal Astronomical Society, 2018, 480, 345-357.	1.6	39
83	ON THE LINK BETWEEN ASSOCIATED Mg II ABSORBERS AND STAR FORMATION IN QUASAR HOSTS. Astrophysical Journal, 2012, 748, 131.	1.6	38
84	Broad absorption line quasars with redshifted troughs: high-velocity infall or rotationally dominated outflows?. Monthly Notices of the Royal Astronomical Society, 2013, 434, 222-256.	1.6	37
85	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES AT <i>z</i> < 1. Astrophysical Journal, 2015, 811, 91.	1.6	36
86	Varstrometry for Off-nucleus and Dual Sub-Kpc AGN (VODKA): How Well Centered Are Low-z AGN?. Astrophysical Journal Letters, 2019, 885, L4.	3.0	36
87	Understanding Broad Mg ii Variability in Quasars with Photoionization: Implications for Reverberation Mapping and Changing-look Quasars. Astrophysical Journal, 2020, 888, 58.	1.6	35
88	THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1. Astronomical Journal, 2016, 152, 25.	1.9	33
89	The Sloan Digital Sky Survey Reverberation Mapping Project: The C iv Blueshift, Its Variability, and Its Dependence Upon Quasar Properties. Astrophysical Journal, 2018, 854, 128.	1.6	33
90	X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3232-3251.	1.6	32

#	Article	IF	CITATIONS
91	The Sloan Digital Sky Survey Reverberation Mapping Project: Accretion and Broad Emission Line Physics from a Hypervariable Quasar. Astrophysical Journal, 2019, 885, 44.	1.6	32
92	Shocked Self-similar Collapses and Flows in Star Formation Processes. Astrophysical Journal, 2004, 611, L117-L120.	1.6	31
93	A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy, 2021, 5, 569-574.	4.2	31
94	COSMIC TRAIN WRECK BY MASSIVE BLACK HOLES: DISCOVERY OF A KILOPARSEC-SCALE TRIPLE ACTIVE GALACTIC NUCLEUS. Astrophysical Journal Letters, 2011, 736, L7.	3.0	30
95	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: AN INVESTIGATION OF BIASES IN C iv EMISSION LINE PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 224, 14.	3.0	30
96	Connecting the X-ray properties of weak-line and typical quasars: testing for a geometrically thick accretion disk. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	30
97	Varstrometry for Off-nucleus and Dual Subkiloparsec AGN (VODKA): Methodology and Initial Results with Gaia DR2. Astrophysical Journal, 2020, 888, 73.	1.6	30
98	Candidate Periodically Variable Quasars from the Dark Energy Survey and the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	28
99	The Sloan Digital Sky Survey Reverberation Mapping Project: Improving Lag Detection with an Extended Multiyear Baseline. Astrophysical Journal Letters, 2019, 883, L14.	3.0	25
100	Varstrometry for Off-nucleus and Dual Subkiloparsec AGN (VODKA): Hubble Space Telescope Discovers Double Quasars. Astrophysical Journal, 2022, 925, 162.	1.6	25
101	The Sloan Digital Sky Survey Reverberation Mapping Project: Comparison of Lag Measurement Methods with Simulated Observations. Astrophysical Journal, 2019, 884, 119.	1.6	24
102	Discovery of a Candidate Binary Supermassive Black Hole in a Periodic Quasar from Circumbinary Accretion Variability. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	24
103	The Sloan Digital Sky Survey Reverberation Mapping Project: How Broad Emission Line Widths Change When Luminosity Changes. Astrophysical Journal, 2020, 903, 51.	1.6	24
104	Optical variability of quasars with 20-yr photometric light curves. Monthly Notices of the Royal Astronomical Society, 2022, 514, 164-184.	1.6	24
105	Forming supermassive black holes by accreting dark and baryon matter. Monthly Notices of the Royal Astronomical Society, 2006, 365, 345-351.	1.6	23
106	Constraints on black hole duty cycles and the black hole-halo relation from SDSS quasar clustering. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	23
107	A Magellan M2FS Spectroscopic Survey of Galaxies at 5.5Â<ÂzÂ<Â6.8: Program Overview and a Sample of the Brightest Lyı̂± Emitters. Astrophysical Journal, 2017, 846, 134.	1.6	23
108	The Sloan Digital Sky Survey Reverberation Mapping Project: Systematic Investigations of Short-timescale C IV Broad Absorption Line Variability. Astrophysical Journal, 2019, 872, 21.	1.6	23

#	Article	IF	CITATIONS
109	Hubble Space Telescope Wide Field Camera 3 Identifies an r _p Â=Â1 Kpc Dual Active Galactic Nucleus in the Minor Galaxy Merger SDSS J0924+0510 at zÂ=Â0.1495 ^{â^—} . Astrophysical Journal, 2018, 862, 29.	1.6	22
110	Dust Reverberation Mapping in Distant Quasars from Optical and Mid-infrared Imaging Surveys. Astrophysical Journal, 2020, 900, 58.	1.6	22
111	STABILITY OF THE DISTANT SATELLITES OF THE GIANT PLANETS IN THE SOLAR SYSTEM. Astronomical Journal, 2008, 136, 2453-2467.	1.9	21
112	The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy. Astronomical Journal, 2018, 155, 6.	1.9	20
113	The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Host Galaxies at zÂ<Â0.8 from Image Decomposition. Astrophysical Journal, 2018, 863, 21.	1.6	20
114	Metallicity in Quasar Broad-line Regions at Redshift â^1⁄4 6. Astrophysical Journal, 2022, 925, 121.	1.6	20
115	CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY*. Astrophysical Journal, 2016, 823, 50.	1.6	19
116	THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III. Astrophysical Journal, 2016, 825, 137.	1.6	18
117	Very Long Baseline Array Imaging of Type-2 Seyferts with Double-peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-powered Outflows*. Astrophysical Journal, 2018, 854, 169.	1.6	18
118	Active Galactic Nucleus Pairs from the Sloan Digital Sky Survey. III. Chandra X-Ray Observations Unveil Obscured Double Nuclei. Astrophysical Journal, 2019, 882, 41.	1.6	18
119	Spectral variability of a sample of extreme variability quasars and implications for the Mg <scp>ii</scp> broad-line region. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5773-5787.	1.6	18
120	SINGLE-EPOCH BLACK HOLE MASS ESTIMATORS FOR BROAD-LINE ACTIVE GALACTIC NUCLEI: RECALIBRATING HÎ ² WITH A NEW APPROACH. Astrophysical Journal, 2014, 794, 77.	1.6	17
121	The Sloan Digital Sky Survey Reverberation Mapping Project: The M _{BH} –Host Relations at 0.2Â≲ÂzÂ≲Â0.6 from Reverberation Mapping and Hubble Space Telescope Imaging. Astrophysical Journal, 3906, 103.	20261,	17
122	A Trio of Massive Black Holes Caught in the Act of Merging*. Astrophysical Journal, 2019, 887, 90.	1.6	17
123	Extreme Variability and Episodic Lifetime of Quasars. Astrophysical Journal, 2021, 921, 70.	1.6	17
124	The Curious Case of PHL 293B: A Long-lived Transient in a Metal-poor Blue Compact Dwarf Galaxy. Astrophysical Journal Letters, 2020, 894, L5.	3.0	16
125	Do Broad Absorption Line Quasars Live in Different Environments from Ordinary Quasars?. Astrophysical Journal, 2008, 677, 858-862.	1.6	16
126	RELATIVISTIC REDSHIFTS IN QUASAR BROAD LINES. Astrophysical Journal, 2014, 794, 49.	1.6	15

#	Article	IF	CITATIONS
127	The Sloan Digital Sky Survey Reverberation Mapping Project: the XMM-Newton X-Ray Source Catalog and Multiband Counterparts. Astrophysical Journal, Supplement Series, 2020, 250, 32.	3.0	15
128	An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. Astrophysical Journal, 2019, 885, 110.	1.6	14
129	Optical Variability of the Dwarf AGN NGC 4395 from the Transiting Exoplanet Survey Satellite. Astrophysical Journal, 2020, 899, 136.	1.6	14
130	The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at zÂâ‰Â1. Astrophysical Journal, 2017, 846, 79.	1.6	13
131	Strong Mg ii and Fe ii Absorbers at 2.2Â<ÂzÂ<Â6.0. Astrophysical Journal, 2021, 906, 32.	1.6	13
132	The Magellan M2FS Spectroscopic Survey of High-redshift Galaxies: A Sample of 260 Lyα Emitters at Redshift zÂâ‰^Â5.7. Astrophysical Journal, 2020, 903, 4.	1.6	13
133	REVERBERATION MAPPING WITH INTERMEDIATE-BAND PHOTOMETRY: DETECTION OF BROAD-LINE Hα TIME LAGS FOR QUASARS AT 0.2 < z < 0.4. Astrophysical Journal, 2016, 818, 137.	1.6	12
134	A Candidate Tidal Disruption Event in a Quasar at zÂ=Â2.359 from Abundance Ratio Variability. Astrophysical Journal, 2018, 859, 8.	1.6	12
135	On the AGN nature of broad balmer emission in four low-redshift metal-poor galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 543-550.	1.6	12
136	Gravitationally coupled scale-free discs. Monthly Notices of the Royal Astronomical Society, 2004, 353, 249-269.	1.6	11
137	Characterization of optical light curves of extreme variability quasars over a â^1⁄416-yr baseline. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3686-3698.	1.6	10
138	Placing High-redshift Quasars in Perspective: A Catalog of Spectroscopic Properties from the Gemini Near Infrared Spectrograph–Distant Quasar Survey. Astrophysical Journal, Supplement Series, 2021, 252, 15.	3.0	9
139	Structures in a class of magnetized scale-free discs. Monthly Notices of the Royal Astronomical Society, 2005, 356, 1333-1356.	1.6	8
140	ASTROMETRIC REVERBERATION MAPPING. Astrophysical Journal, 2012, 757, 152.	1.6	8
141	Probing AGN inner structure with X-ray obscured type 1 AGN. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5022-5034.	1.6	8
142	Dark Energy Survey identification of a low-mass active galactic nucleus at redshift 0.823 from optical variability. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3636-3647.	1.6	6
143	The Sloan Digital Sky Survey Reverberation Mapping Project: UV–Optical Accretion Disk Measurements with the Hubble Space Telescope. Astrophysical Journal, 2022, 926, 225.	1.6	5
144	A Sample Bias in Quasar Variability Studies. Astrophysical Journal Letters, 2021, 918, L19.	3.0	4

#	Article	IF	CITATIONS
145	Global Axisymmetric Stability Analysis for a Composite System of Two Gravitationally Coupled Scale-Free Discs. Research in Astronomy and Astrophysics, 2004, 4, 541-552.	1.1	3
146	X-Ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines. Astrophysical Journal, 2017, 839, 101.	1.6	3
147	A Novel Test of Quasar Orientation. Astrophysical Journal Letters, 2021, 914, L14.	3.0	3
148	The Sloan Digital Sky Survey Reverberation Mapping Project: Photometric <i>g</i> and <i>i</i> Light Curves. Astrophysical Journal, Supplement Series, 2020, 250, 10.	3.0	3
149	Outflows and Inflows in Astrophysical Systems. Research in Astronomy and Astrophysics, 2005, 5, 241-246.	1.1	1
150	PHL 6625: A Minor Merger-associated QSO Behind NGC 247. Astrophysical Journal, 2017, 841, 118.	1.6	1
151	Gemini Speckle Imaging of Dual Quasar Candidates. Research Notes of the AAS, 2021, 5, 210.	0.3	1
152	Weighing supermassive black holes. Nature Astronomy, 2018, 2, 30-31.	4.2	0
153	Obscured active galactic nuclei and the need for optical to nearâ€infrared, massively multiplexed, spectroscopic facilities. Astronomische Nachrichten, 0	0.6	0