
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975330/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.                                                              | 3.9  | 39        |
| 2  | Enhancing access to innovative cancer drugs: Cross-sector consensus on a way forward to benefit patients. Drug Discovery Today, 2022, 27, 946-950.                      | 6.4  | 1         |
| 3  | canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic<br>Acids Research, 2021, 49, D1074-D1082.                                 | 14.5 | 63        |
| 4  | Public resources for chemical probes: the journey so far and the road ahead. Future Medicinal Chemistry, 2021, 13, 731-747.                                             | 2.3  | 24        |
| 5  | Applications of liquid biopsy in the Pharmacological Audit Trail for anticancer drug development.<br>Nature Reviews Clinical Oncology, 2021, 18, 454-467.               | 27.6 | 11        |
| 6  | A New Chemical Probe Challenges the Broad Cancer Essentiality of CK2. Trends in Pharmacological Sciences, 2021, 42, 313-315.                                            | 8.7  | 16        |
| 7  | Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chemical Biology, 2021, 28, 1433-1445.e3.                                                        | 5.2  | 13        |
| 8  | HER3 Is an Actionable Target in Advanced Prostate Cancer. Cancer Research, 2021, 81, 6207-6218.                                                                         | 0.9  | 25        |
| 9  | Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nature Communications, 2021, 12, 6738.               | 12.8 | 10        |
| 10 | Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the<br>Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.                  | 7.3  | 30        |
| 11 | Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Scientific Reports, 2020, 10, 16000.  | 3.3  | 8         |
| 12 | Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS ONE, 2020, 15, e0234103.                                   | 2.5  | 50        |
| 13 | The kinase polypharmacology landscape of clinical PARP inhibitors. Scientific Reports, 2020, 10, 2585.                                                                  | 3.3  | 68        |
| 14 | From patent to patient: analysing access to innovative cancer drugs. Drug Discovery Today, 2020, 25, 1561-1568.                                                         | 6.4  | 11        |
| 15 | Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective.<br>Advances in Experimental Medicine and Biology, 2020, 1243, 163-179.    | 1.6  | 18        |
| 16 | CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells. Cancer Research, 2020, 80, 1735-1747.  | 0.9  | 38        |
| 17 | Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. Journal of Clinical Investigation, 2020, 130, 5875-5892. | 8.2  | 40        |
| 18 | Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene, 2019, 38, 5905-5920.         | 5.9  | 23        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transforming cancer drug discovery with Big Data and Al. Expert Opinion on Drug Discovery, 2019, 14, 1089-1095.                                                                                                           | 5.0  | 22        |
| 20 | Pharmacodynamic and Clinical Results from a Phase I/II Study of the HSP90 Inhibitor Onalespib in<br>Combination with Abiraterone Acetate in Prostate Cancer. Clinical Cancer Research, 2019, 25,<br>4624-4633.            | 7.0  | 21        |
| 21 | Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene, 2019, 38, 5076-5090.                                                                                       | 5.9  | 26        |
| 22 | canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic<br>Acids Research, 2019, 47, D917-D922.                                                                                     | 14.5 | 75        |
| 23 | Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release. Biochemical Journal, 2019, 476, 2521-2543.                                      | 3.7  | 6         |
| 24 | Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359, 920-926.                                                                                                   | 12.6 | 1,199     |
| 25 | Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets.<br>Nature Genetics, 2018, 50, 682-692.                                                                                | 21.4 | 182       |
| 26 | Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Cell Chemical Biology, 2018, 25, 194-205.e5.                                                                                                          | 5.2  | 71        |
| 27 | Molecular profiling and combinatorial activity of <scp>CCT</scp> 068127: a potent <scp>CDK</scp> 2<br>and <scp>CDK</scp> 9 inhibitor. Molecular Oncology, 2018, 12, 287-304.                                              | 4.6  | 33        |
| 28 | Demonstrating In-Cell Target Engagement Using a Pirin Protein Degradation Probe (CCT367766).<br>Journal of Medicinal Chemistry, 2018, 61, 918-933.                                                                        | 6.4  | 81        |
| 29 | MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma.<br>Gastroenterology, 2018, 154, 1066-1079.e5.                                                                                          | 1.3  | 94        |
| 30 | Privileged Structures and Polypharmacology within and between Protein Families. ACS Medicinal Chemistry Letters, 2018, 9, 1199-1204.                                                                                      | 2.8  | 16        |
| 31 | Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut, 2017, 66, 1268-1277.                                                                                                           | 12.1 | 75        |
| 32 | Inhibitors of cyclin-dependent kinases as cancer therapeutics. , 2017, 173, 83-105.                                                                                                                                       |      | 278       |
| 33 | How Much Longer Will We Put Up With \$100,000 Cancer Drugs?. Cell, 2017, 168, 579-583.                                                                                                                                    | 28.9 | 74        |
| 34 | Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell, 2017, 32, 9-25.                                                                                                                         | 16.8 | 183       |
| 35 | Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. Journal of Medicinal Chemistry, 2017, 60, 180-201. | 6.4  | 47        |
| 36 | Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Current<br>Pharmaceutical Design, 2017, 22, 6935-6945.                                                                                 | 1.9  | 65        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure-based drug design: aiming for a perfect fit. Essays in Biochemistry, 2017, 61, 431-437.                                                                                                                 | 4.7  | 75        |
| 38 | Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. ELife, 2016, 5, .                                                                       | 6.0  | 69        |
| 39 | 2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19. ACS Medicinal Chemistry Letters, 2016, 7, 573-578.                                          | 2.8  | 39        |
| 40 | Second-Generation HSP90 Inhibitor Onalespib Blocks mRNA Splicing of Androgen Receptor Variant 7 in<br>Prostate Cancer Cells. Cancer Research, 2016, 76, 2731-2742.                                                | 0.9  | 79        |
| 41 | Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70. Journal of Medicinal Chemistry, 2016, 59, 4625-4636.                                                                  | 6.4  | 29        |
| 42 | Critical parameters in targeted drug development: the pharmacological audit trail. Seminars in Oncology, 2016, 43, 436-445.                                                                                       | 2.2  | 64        |
| 43 | Drug discovery in advanced prostate cancer: translating biology into therapy. Nature Reviews Drug<br>Discovery, 2016, 15, 699-718.                                                                                | 46.4 | 111       |
| 44 | The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the<br>preclinical development of targeted anticancer drugs. Drug Discovery Today: Disease Models, 2016, 21, 23-32.     | 1.2  | 8         |
| 45 | Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9. MedChemComm, 2016, 7, 1580-1586.                                                       | 3.4  | 19        |
| 46 | Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator<br>Complex-Associated Kinases CDK8 and CDK19. Journal of Medicinal Chemistry, 2016, 59, 1078-1101.              | 6.4  | 89        |
| 47 | Blocking the survival of the nastiest by HSP90 inhibition. Oncotarget, 2016, 7, 3658-3661.                                                                                                                        | 1.8  | 11        |
| 48 | Distinctive Behaviors of Druggable Proteins in Cellular Networks. PLoS Computational Biology, 2015,<br>11, e1004597.                                                                                              | 3.2  | 43        |
| 49 | First-in-Human Phase I Study of Pictilisib (GDC-0941), a Potent Pan–Class I Phosphatidylinositol-3-Kinase<br>(PI3K) Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2015, 21, 77-86. | 7.0  | 265       |
| 50 | Discovery of Potent, Orally Bioavailable, Small-Molecule Inhibitors of WNT Signaling from a<br>Cell-Based Pathway Screen. Journal of Medicinal Chemistry, 2015, 58, 1717-1735.                                    | 6.4  | 65        |
| 51 | The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.                                                                                                                             | 8.0  | 698       |
| 52 | A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nature<br>Chemical Biology, 2015, 11, 973-980.                                                                              | 8.0  | 114       |
| 53 | Maximizing the Therapeutic Potential of HSP90 Inhibitors. Molecular Cancer Research, 2015, 13, 1445-1451.                                                                                                         | 3.4  | 161       |
| 54 | Drugging cancer genomes. Nature Reviews Drug Discovery, 2013, 12, 889-890.                                                                                                                                        | 46.4 | 47        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology, 2013, 9, 3-6.                                                                                                        | 8.0  | 141       |
| 56 | Objective assessment of cancer genes for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 35-50.                                                                                                    | 46.4 | 111       |
| 57 | ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nature Chemical Biology, 2013, 9, 307-312.                                                                           | 8.0  | 132       |
| 58 | The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design. Oncotarget, 2013, 4, 1647-1661.                                                       | 1.8  | 20        |
| 59 | Exploiting the Cancer Genome: Strategies for the Discovery and Clinical Development of Targeted Molecular Therapeutics. Annual Review of Pharmacology and Toxicology, 2012, 52, 549-573.                    | 9.4  | 96        |
| 60 | Hsp90 Molecular Chaperone Inhibitors: Are We There Yet?. Clinical Cancer Research, 2012, 18, 64-76.                                                                                                         | 7.0  | 855       |
| 61 | Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnology, 2012, 30, 679-692.                                                                                                     | 17.5 | 883       |
| 62 | HSP90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discovery Today, 2012, 17, 242-252.                                                                                                 | 6.4  | 101       |
| 63 | Design, synthesis and biological evaluation of 6-pyridylmethylaminopurines as CDK inhibitors.<br>Bioorganic and Medicinal Chemistry, 2011, 19, 6949-6965.                                                   | 3.0  | 31        |
| 64 | A Phase I Study of the Heat Shock Protein 90 Inhibitor Alvespimycin (17-DMAG) Given Intravenously to<br>Patients with Advanced Solid Tumors. Clinical Cancer Research, 2011, 17, 1561-1570.                 | 7.0  | 178       |
| 65 | Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug<br>development?. Drug Discovery Today, 2010, 15, 88-97.                                                        | 6.4  | 69        |
| 66 | Probing the Probes: Fitness Factors For Small Molecule Tools. Chemistry and Biology, 2010, 17, 561-577.                                                                                                     | 6.0  | 253       |
| 67 | Envisioning the future of early anticancer drug development. Nature Reviews Cancer, 2010, 10, 514-523.                                                                                                      | 28.4 | 262       |
| 68 | A Useful Approach to Identify Novel Small-Molecule Inhibitors of Wnt-Dependent Transcription.<br>Cancer Research, 2010, 70, 5963-5973.                                                                      | 0.9  | 96        |
| 69 | Drugging the heat shock factor 1 pathway: Exploitation of the critical cancer cell dependence on the guardian of the proteome. Cell Cycle, 2009, 8, 3806-3808.                                              | 2.6  | 35        |
| 70 | Death by chaperone: HSP90, HSP70 or both?. Cell Cycle, 2009, 8, 518-526.                                                                                                                                    | 2.6  | 93        |
| 71 | Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103<br>through PI-540, PI-620 to the oral agent GDC-0941. Molecular Cancer Therapeutics, 2009, 8, 1725-1738. | 4.1  | 253       |
| 72 | Dual Targeting of HSC70 and HSP72 Inhibits HSP90 Function and Induces Tumor-Specific Apoptosis.<br>Cancer Cell, 2008, 14, 250-262.                                                                          | 16.8 | 291       |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | 4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of<br>Cancer. Journal of Medicinal Chemistry, 2008, 51, 196-218.                                                                               | 6.4 | 386       |
| 74 | NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth,<br>Angiogenesis, and Metastasis. Cancer Research, 2008, 68, 2850-2860.                                                                             | 0.9 | 433       |
| 75 | Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Molecular Cancer Therapeutics, 2007, 6, 1198-1211.                              | 4.1 | 141       |
| 76 | In vitro Biological Characterization of a Novel, Synthetic Diaryl Pyrazole Resorcinol Class of Heat<br>Shock Protein 90 Inhibitors. Cancer Research, 2007, 67, 2206-2216.                                                                     | 0.9 | 111       |
| 77 | Using biomarkers in drug development. Clinical Advances in Hematology and Oncology, 2006, 4, 736-9.                                                                                                                                           | 0.3 | 5         |
| 78 | The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3338-3343.                          | 2.2 | 228       |
| 79 | Phase I Pharmacokinetic and Pharmacodynamic Study of 17-Allylamino, 17-Demethoxygeldanamycin in<br>Patients With Advanced Malignancies. Journal of Clinical Oncology, 2005, 23, 4152-4161.                                                    | 1.6 | 479       |
| 80 | Novel, Potent Small-Molecule Inhibitors of the Molecular Chaperone Hsp90 Discovered through Structure-Based Design. Journal of Medicinal Chemistry, 2005, 48, 4212-4215.                                                                      | 6.4 | 232       |
| 81 | The Cyclin-dependent Kinase Inhibitor CYC202 (R-Roscovitine) Inhibits Retinoblastoma Protein<br>Phosphorylation, Causes Loss of Cyclin D1, and Activates the Mitogen-activated Protein Kinase<br>Pathway. Cancer Research, 2004, 64, 262-272. | 0.9 | 187       |
| 82 | How Much Gets there and What Does it Do?: The Need for Better Pharmacokinetic and<br>Pharmacodynamic Endpoints in Contemporary Drug Discovery and Development. Current<br>Pharmaceutical Design, 2003, 9, 891-902.                            | 1.9 | 141       |
| 83 | Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics. Molecular Cancer Therapeutics, 2003,                                                | 4.1 | 63        |