List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975293/publications.pdf Version: 2024-02-01

ΗΙΡΟΚΙ ΝΛΟΛΙ

#	Article	IF	CITATIONS
1	A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on <i>Legionella</i> Phagosomes. Science, 2002, 295, 679-682.	12.6	530
2	Regulation of the Heat-Shock Response in Bacteria. Annual Review of Microbiology, 1993, 47, 321-350.	7.3	500
3	A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 826-831.	7.1	262
4	<i>Legionella</i> translocates an E3 ubiquitin ligase that has multiple Uâ€boxes with distinct functions. Molecular Microbiology, 2008, 67, 1307-1319.	2.5	198
5	Systematic sequencing of theEscherichia coligenome: analysis of the 0 – 2.4 min region. Nucleic Acids Research, 1992, 20, 3305-3308.	14.5	173
6	Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Molecular Microbiology, 2000, 38, 719-736.	2.5	166
7	Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector. PLoS Pathogens, 2010, 6, e1001216.	4.7	162
8	Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10515-10519.	7.1	155
9	Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Frontiers in Microbiology, 2011, 2, 136.	3.5	135
10	Show me the substrates: modulation of host cell function by type IV secretion systems. Cellular Microbiology, 2003, 5, 373-383.	2.1	103
11	The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO Journal, 2001, 20, 5962-5970.	7.8	95
12	The Structure of RalF, an ADP-ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site. Journal of Biological Chemistry, 2005, 280, 1392-1400.	3.4	92
13	Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. Journal of Bacteriology, 1990, 172, 2710-2715.	2.2	77
14	A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10280-10284.	7.1	73
15	Heat induction of Î,32synthesis mediated by mRNA secondary structure: a primary step of the heat shock response inEscherichia coli. Nucleic Acids Research, 1993, 21, 5449-5455.	14.5	68
16	The Type IVB secretion system: an enigmatic chimera. Current Opinion in Microbiology, 2016, 29, 22-29.	5.1	68
17	The Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins. PLoS Pathogens, 2014, 10, e1004222.	4.7	63
18	Native structure of a type IV secretion system core complex essential for <i>Legionella</i> pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11804-11809.	7.1	62

#	Article	IF	CITATIONS
19	Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nature Microbiology, 2016, 1, 16054.	13.3	54
20	LotA, a <i>Legionella</i> deubiquitinase, has dual catalytic activity and contributes to intracellular growth. Cellular Microbiology, 2018, 20, e12840.	2.1	53
21	Regions of the Escherichia coli primary sigma factor σ 70 that are involved in interaction with RNA polymerase core enzyme. Genes To Cells, 1997, 2, 725-734.	1.2	50
22	Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems. PLoS Pathogens, 2010, 6, e1001129.	4.7	50
23	GroEL is involved in activation of Escherichia coli RNA polymerase devoid of the omega subunit in vivo. FEBS Journal, 1999, 266, 228-235.	0.2	49
24	Amoebal Endosymbiont Neochlamydia Genome Sequence Illuminates the Bacterial Role in the Defense of the Host Amoebae against Legionella pneumophila. PLoS ONE, 2014, 9, e95166.	2.5	46
25	Molecular and structural analysis of Legionella Dotl gives insights into an inner membrane complex essential for type IV secretion. Scientific Reports, 2015, 5, 10912.	3.3	36
26	Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Scientific Reports, 2017, 7, 44795.	3.3	36
27	Modulation of the Ubiquitination Machinery by Legionella. Current Topics in Microbiology and Immunology, 2013, 376, 227-247.	1.1	34
28	Divergence of Legionella Effectors Reversing Conventional and Unconventional Ubiquitination. Frontiers in Cellular and Infection Microbiology, 2020, 10, 448.	3.9	31
29	Legionella RavZ Plays a Role in Preventing Ubiquitin Recruitment to Bacteria-Containing Vacuoles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 384.	3.9	29
30	Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nature Communications, 2020, 11, 2623.	12.8	29
31	Staphylococcal Phage in Combination with Staphylococcus epidermidis as a Potential Treatment for Staphylococcus aureus-Associated Atopic Dermatitis and Suppressor of Phage-Resistant Mutants. Viruses, 2021, 13, 7.	3.3	29
32	Reduction in Abortive Transcription from the λPR Promoter by Mutations in Region 3 of the Ï,70 Subunit of Escherichia coli RNA Polymerase. Journal of Biological Chemistry, 1998, 273, 9872-9877.	3.4	28
33	Polymerase Arrest at the λP R Promoter during Transcription Initiation. Journal of Biological Chemistry, 2000, 275, 10899-10904.	3.4	26
34	Amoebal endosymbiont Neochlamydia protects host amoebae against Legionella pneumophila infection by preventing Legionella entry. Microbes and Infection, 2018, 20, 236-244.	1.9	25
35	Legionella hijacks the host Golgi-to-ER retrograde pathway for the association of Legionella-containing vacuole with the ER. PLoS Pathogens, 2021, 17, e1009437.	4.7	22
36	Functional Domains of Escherichia coli Single-Stranded DNA Binding Protein As Assessed by Analyses of the Deletion Mutants. Biochemistry, 1997, 36, 6732-6738.	2.5	20

#	Article	IF	CITATIONS
37	Conformational switching ofEscherichia coliRNA polymerase-promoter binary complex is facilitated by elongation factor GreA and GreB. Genes To Cells, 2001, 6, 389-401.	1.2	20
38	Emerging insights into bacterial deubiquitinases. Current Opinion in Microbiology, 2019, 47, 14-19.	5.1	20
39	Legionella Manipulates Non-canonical SNARE Pairing Using a Bacterial Deubiquitinase. Cell Reports, 2020, 32, 108107.	6.4	19
40	Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translational control of lf 32 synthesis. Biochimie, 1991, 73, 1473-1479.	2.6	17
41	Bacterial Effector-Involved Temporal and Spatial Regulation by Hijack of the Host Ubiquitin Pathway. Frontiers in Microbiology, 2011, 2, 145.	3.5	17
42	Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Current Microbiology, 2021, 78, 1267-1276.	2.2	17
43	Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor. PLoS ONE, 2013, 8, e56005.	2.5	13
44	Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion System. Current Topics in Microbiology and Immunology, 2017, 413, 221-242.	1.1	13
45	Roles and regulation of the heat shock ? factor ?32 in Escherichia coli. Antonie Van Leeuwenhoek, 1990, 58, 187-190.	1.7	12
46	Structural Basis of Ubiquitin Recognition by a Bacterial Ovarian Tumor Deubiquitinase LotA. Journal of Bacteriology, 2022, 204, JB0037621.	2.2	11
47	MicroRNA 142-5p promotes tumor growth in oral squamous cell carcinoma via the PI3K/AKT pathway by regulating PTEN. Heliyon, 2021, 7, e08086.	3.2	10
48	<i>Acanthamoeba</i> S13WT relies on its bacterial endosymbiont to backpack human pathogenic bacteria and resist <i>Legionella</i> infection on solid media. Environmental Microbiology Reports, 2018, 10, 344-354.	2.4	9
49	Recent advances in structural studies of the <i>Legionella pneumophila</i> Dot/Icm type IV secretion system. Microbiology and Immunology, 2022, 66, 67-74.	1.4	9
50	Isolation of the Dot/Icm Type IV Secretion System Core Complex from Legionella pneumophila. Methods in Molecular Biology, 2019, 1921, 241-247.	0.9	7
51	A Case of Brain Abscess Caused by Medication-Related Osteonecrosis of the Jaw. Case Reports in Dentistry, 2016, 2016, 1-4.	0.5	6
52	Reversible modification of mitochondrial ADP/ATP translocases by paired <i>Legionella</i> effector proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
53	Identification and functional characterization of K+transporters encoded byLegionella pneumophilaâ€kupgenes. Cellular Microbiology, 2013, 15, 2006-2019.	2.1	4
54	Hijacking the Host Proteasome for the Temporal Degradation of Bacterial Effectors. Methods in Molecular Biology, 2014, 1197, 141-152.	0.9	4

#	Article	IF	CITATIONS
55	Purification and Characterization of Legionella U-Box-Type E3 Ubiquitin Ligase. Methods in Molecular Biology, 2013, 954, 347-354.	0.9	4
56	Draft Genome Sequences of <i>Legionella pneumophila</i> JR32 and Lp01 Laboratory Strains Domesticated in Japan. Genome Announcements, 2016, 4, .	0.8	3
57	Requirement of phosphatidic acid binding for distribution of the bacterial protein Lpg1137 targeting syntaxin 17. Journal of Cell Science, 2022, 135, .	2.0	3
58	Efficient solubilization of proteins overproduced as inclusion bodies by use of an extreme concentration of glycerol. Technical Tips Online, 1998, 3, 141-143.	0.2	2
59	Complete genome and bimodal genomic structure of the amoebal symbiont Neochlamydia strain S13 revealed by ultra-long reads obtained from MinION. Journal of Human Genetics, 2020, 65, 41-48.	2.3	1
60	Protein footprinting technique Seibutsu Butsuri, 1998, 38, 116-118.	0.1	1
61	Protocol for imaging proteins associated with Legionella-containing vacuoles in host cells. STAR Protocols, 2021, 2, 100410.	1.2	0
62	Isolation of the Dot/Icm Type IV Secretion System Core Complex from Legionella pneumophila for Negative Stain Electron Microscopy Studies. Bio-protocol, 2017, 7, e2229.	0.4	0
63	2S-B1-2Autophagy-related Host System and Legionella. Microscopy (Oxford, England), 2017, 66, i14-i14.	1.5	0