## Tomoya Hirota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975225/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333. Publication of the Astronomical Society of Japan, 2008, 60, 37-44.                                   | 2.5  | 208       |
| 2  | Change in the chemical composition of infalling gas forming a disk around a protostar. Nature, 2014, 507, 78-80.                                                                              | 27.8 | 196       |
| 3  | Abundant Carbonâ€Chain Molecules toward the Lowâ€Mass Protostar IRAS 04368+2557 in L1527.<br>Astrophysical Journal, 2008, 672, 371-381.                                                       | 4.5  | 165       |
| 4  | Distance to Orion KL Measured with VERA. Publication of the Astronomical Society of Japan, 2007, 59, 897-903.                                                                                 | 2.5  | 161       |
| 5  | SiO Maser Observations toward Orion-KL with VERA. Publication of the Astronomical Society of Japan, 2008, 60, 991-999.                                                                        | 2.5  | 146       |
| 6  | Disk-driven rotating bipolar outflow in Orion Source I. Nature Astronomy, 2017, 1, .                                                                                                          | 10.1 | 101       |
| 7  | DISCOVERY OF THE SECOND WARM CARBON-CHAIN-CHEMISTRY SOURCE, IRAS15398 – 3359 IN LUPUS.<br>Astrophysical Journal, 2009, 697, 769-786.                                                          | 4.5  | 94        |
| 8  | Astrometry of H\$_{2}\$ O Masers in Nearby Star-Forming Regions with VERA. IV. L 1448 C. Publication of the Astronomical Society of Japan, 2011, 63, 1-8.                                     | 2.5  | 80        |
| 9  | DISCOVERY OF A HOT CORINO IN THE BOK GLOBULE B335. Astrophysical Journal Letters, 2016, 830, L37.                                                                                             | 8.3  | 80        |
| 10 | L483: Warm Carbon-chain Chemistry Source Harboring Hot Corino Activity. Astrophysical Journal,<br>2017, 837, 174.                                                                             | 4.5  | 78        |
| 11 | A SEARCH FOR CARBON-CHAIN-RICH CORES IN DARK CLOUDS. Astrophysical Journal, 2009, 699, 585-602.                                                                                               | 4.5  | 71        |
| 12 | The Perseus ALMA Chemistry Survey (PEACHES). I. The Complex Organic Molecules in Perseus Embedded<br>Protostars. Astrophysical Journal, 2021, 910, 20.                                        | 4.5  | 66        |
| 13 | The First VERA Astrometry Catalog. Publication of the Astronomical Society of Japan, 2020, 72, .                                                                                              | 2.5  | 65        |
| 14 | Dual-Beam Delay Calibration for VERA. Publication of the Astronomical Society of Japan, 2008, 60, 935-950.                                                                                    | 2.5  | 62        |
| 15 | CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH. Astrophysical Journal Letters, 2014, 791, L23.                                                                           | 8.3  | 61        |
| 16 | A SUBSTELLAR-MASS PROTOSTAR AND ITS OUTFLOW OF IRAS 15398–3359 REVEALED BY<br>SUBARCSECOND-RESOLUTION OBSERVATIONS of H <sub>2</sub> CO AND CCH. Astrophysical Journal,<br>2014, 795, 152.    | 4.5  | 61        |
| 17 | CANDIDATE WATER VAPOR LINES TO LOCATE THE H <sub>2</sub> 0 SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR. Astrophysical Journal, 2016, 827, 113. | 4.5  | 58        |
| 18 | DEUTERATED MOLECULES IN WARM CARBON CHAIN CHEMISTRY: THE L1527 CASE. Astrophysical Journal, 2009, 702, 1025-1035.                                                                             | 4.5  | 57        |

ΤομούΑ Ηικοτά

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | DISTRIBUTIONS OF CARBON-CHAIN MOLECULES IN L1527. Astrophysical Journal, 2010, 722, 1633-1643.                                                                                                             | 4.5 | 55        |
| 20 | SUBARCSECOND ANALYSIS OF THEÂINFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535. Astrophysical Journal Letters, 2016, 820, L34.                                                      | 8.3 | 52        |
| 21 | SURVEY OBSERVATIONS OF A POSSIBLE GLYCINE PRECURSOR, METHANIMINE (CH <sub>2</sub> NH).<br>Astrophysical Journal, 2016, 825, 79.                                                                            | 4.5 | 49        |
| 22 | Formation and Evolution of Disks Around Young Stellar Objects. Space Science Reviews, 2020, 216, 43.                                                                                                       | 8.1 | 49        |
| 23 | ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – I. Survey description and a first look at G9.62+0.19. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2790-2820. | 4.4 | 45        |
| 24 | A HOT MOLECULAR CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR ORION SOURCE I.<br>Astrophysical Journal Letters, 2014, 782, L28.                                                                          | 8.3 | 41        |
| 25 | Astrochemical Properties of Planck Cold Clumps. Astrophysical Journal, Supplement Series, 2017, 228, 12.                                                                                                   | 7.7 | 41        |
| 26 | ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex. Astrophysical Journal, 2017, 849, 25.                                                                                          | 4.5 | 41        |
| 27 | Chemical Survey toward Young Stellar Objects in the Perseus Molecular Cloud Complex.<br>Astrophysical Journal, Supplement Series, 2018, 236, 52.                                                           | 7.7 | 38        |
| 28 | Candidate Water Vapor Lines to Locate the H <sub>2</sub> O Snowline Through High-dispersion<br>Spectroscopic Observations. II. The Case of a Herbig Ae Star. Astrophysical Journal, 2017, 836, 118.        | 4.5 | 34        |
| 29 | The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publication of the Astronomical Society of Japan, 2016, 68, .                     | 2.5 | 32        |
| 30 | <sup>13</sup> CH <sub>3</sub> OH Masers Associated With a Transient Phenomenon in a High-mass<br>Young Stellar Object. Astrophysical Journal Letters, 2020, 890, L22.                                      | 8.3 | 31        |
| 31 | Detection of a new methylamine (CH3NH2) source: Candidate for future glycine surveys. Publication of the Astronomical Society of Japan, 2019, 71, .                                                        | 2.5 | 29        |
| 32 | Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the<br>Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.                     | 4.5 | 28        |
| 33 | Observations of 6.7 GHz methanol masers with East-Asian VLBI Network. I. VLBI images of the first epoch of observations. Publication of the Astronomical Society of Japan, 2014, 66, .                     | 2.5 | 27        |
| 34 | The First Bird's-eye View of a Gravitationally Unstable Accretion Disk in High-mass Star Formation.<br>Astrophysical Journal Letters, 2019, 877, L25.                                                      | 8.3 | 26        |
| 35 | Salt, Hot Water, and Silicon Compounds Tracing Massive Twin Disks. Astrophysical Journal Letters, 2020, 900, L2.                                                                                           | 8.3 | 26        |
| 36 | ANNUAL PARALLAX DETERMINATION TOWARD A NEW X-RAY-EMITTING CLASS 0 CANDIDATE WITH THE WATER<br>MASER IN THE NGC 2264 STAR-FORMING REGION. Astrophysical Journal, Supplement Series, 2014, 211, 18.          | 7.7 | 25        |

ΤομούΑ Ηικοτά

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | ALMA IMAGING OF MILLIMETER/SUBMILLIMETER CONTINUUM EMISSION IN ORION KL. Astrophysical Journal, 2015, 801, 82.                                                                                                                                                  | 4.5  | 25        |
| 38 | Sulfur-bearing Species Tracing the Disk/Envelope System in the Class I Protostellar Source Elias 29.<br>Astrophysical Journal, 2019, 881, 112.                                                                                                                  | 4.5  | 25        |
| 39 | New maser species tracing spiral-arm accretion flows in a high-mass young stellar object. Nature Astronomy, 2020, 4, 1170-1176.                                                                                                                                 | 10.1 | 25        |
| 40 | THE FIRST DETECTION OF THE 232 GHz VIBRATIONALLY EXCITED H <sub>2</sub> O MASER IN ORION KL WITH ALMA. Astrophysical Journal Letters, 2012, 757, L1.                                                                                                            | 8.3  | 24        |
| 41 | SPECTRAL LINE SURVEY TOWARD THE YOUNG MASSIVE PROTOSTAR NGC 2264 CMM3 IN THE 4 mm, 3 mm, AND 0.8 mm BANDS. Astrophysical Journal, 2015, 809, 162.                                                                                                               | 4.5  | 24        |
| 42 | The Difference in Abundance between N-bearing and O-bearing Species in High-mass Star-forming<br>Regions. Astrophysical Journal, Supplement Series, 2018, 237, 3.                                                                                               | 7.7  | 23        |
| 43 | Gravitationally Unstable Condensations Revealed by ALMA in the TUKH122 Prestellar Core in the Orion<br>A Cloud. Astrophysical Journal, 2018, 856, 147.                                                                                                          | 4.5  | 22        |
| 44 | An Expanded Gas-grain Model for Interstellar Glycine. Astrophysical Journal, 2018, 863, 51.                                                                                                                                                                     | 4.5  | 21        |
| 45 | ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: 278 GHz CLASS I METHANOL MASERS.<br>Astrophysical Journal Letters, 2014, 794, L10.                                                                                                                        | 8.3  | 20        |
| 46 | ATOMS: ALMA three-millimeter observations of massive star-forming regions – II. Compact objects in ACA observations and star formation scaling relations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2821-2835.                              | 4.4  | 20        |
| 47 | VERA and ALMA observations of the H2O supermaser burst in Orion KL. Publication of the<br>Astronomical Society of Japan, 2014, 66, .                                                                                                                            | 2.5  | 19        |
| 48 | ALMA Observations of the IRDC Clump G34.43+00.24 MM3: Complex Organic and Deuterated Molecules.<br>Astrophysical Journal, 2018, 857, 35.                                                                                                                        | 4.5  | 19        |
| 49 | FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.                                                                           | 4.5  | 19        |
| 50 | IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL. Astrophysical Journal Letters, 2011, 739, L59.                                                                                                                                                     | 8.3  | 18        |
| 51 | A Statistical Study of Massive Cluster-forming Clumps. Astrophysical Journal, 2018, 855, 45.                                                                                                                                                                    | 4.5  | 18        |
| 52 | Candidate Water Vapor Lines to Locate the H <sub>2</sub> O Snowline through High-dispersion<br>Spectroscopic Observations. III. Submillimeter H <sub>2</sub> <sup>16</sup> O and H <sub>2</sub><br><sup>18</sup> O Lines. Astrophysical Journal, 2018, 855, 62. | 4.5  | 18        |
| 53 | Chemical Diversity in Three Massive Young Stellar Objects Associated with 6.7 GHz CH <sub>3</sub> OH<br>Masers. Astrophysical Journal, 2018, 866, 150.                                                                                                          | 4.5  | 18        |
| 54 | Chemical variation in molecular cloud cores in the OrionÂA cloud. II Publication of the Astronomical<br>Society of Japan, 2014, 66, .                                                                                                                           | 2.5  | 15        |

4

ΤομούΑ Ηικοτά

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Accelerating a water maser face-on jet from a high mass young stellar object. Publication of the<br>Astronomical Society of Japan, 2016, 68, .                                | 2.5 | 15        |
| 56 | ALMA Observations of the Archetypal "Hot Core―That Is Not: Orion-KL. Astrophysical Journal, 2017,<br>847, 66.                                                                 | 4.5 | 15        |
| 57 | Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey.<br>Astrophysical Journal, Supplement Series, 2020, 249, 33.                            | 7.7 | 15        |
| 58 | Chemical variation in molecular cloud cores in the Orion A Cloud. III. Publication of the Astronomical<br>Society of Japan, 2014, 66, .                                       | 2.5 | 14        |
| 59 | ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: DNC/HNC RATIO. Astrophysical Journal, 2015, 803, 70.                                                                    | 4.5 | 13        |
| 60 | ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines.<br>Astrophysical Journal, 2020, 895, 119.                                                | 4.5 | 13        |
| 61 | The Intrinsic Structure of Sagittarius A* at 1.3 cm and 7 mm. Astrophysical Journal, 2022, 926, 108.                                                                          | 4.5 | 13        |
| 62 | MOLECULAR LINE OBSERVATIONS OF MCLD 123.5+24.9 IN THE POLARIS CIRRUS. Astrophysical Journal, 2012, 745, 195.                                                                  | 4.5 | 12        |
| 63 | Observations of Cyanopolyynes toward Four High-mass Star-forming Regions Containing Hot Cores.<br>Astrophysical Journal, 2017, 844, 68.                                       | 4.5 | 12        |
| 64 | East Asian VLBI Network observations of active galactic nuclei jets: imaging with<br>KaVA+Tianma+Nanshan. Research in Astronomy and Astrophysics, 2021, 21, 205.              | 1.7 | 12        |
| 65 | The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). V. Deuterated Molecules in the 70 μm Dark IRDC G14.492-00.139. Astrophysical Journal, 2022, 925, 144. | 4.5 | 12        |
| 66 | THERMAL STARLESS AMMONIA CORE SURROUNDED BY CCS IN THE ORION A CLOUD. Astrophysical Journal, 2014, 789, 83.                                                                   | 4.5 | 11        |
| 67 | ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I. Astrophysical Journal, 2016, 833, 238.                                                                                    | 4.5 | 11        |
| 68 | SiO MASERS AROUND WX PSC MAPPED WITH THE KVN AND VERA ARRAY (KaVA). Astrophysical Journal, 2016, 822, 3.                                                                      | 4.5 | 11        |
| 69 | Water maser variability in a high-mass YSO outburst. Astronomy and Astrophysics, 2021, 647, A23.                                                                              | 5.1 | 11        |
| 70 | ALMA OBSERVATION OF THE 658 GHz VIBRATIONALLY EXCITED H <sub>2</sub> 0 MASER IN ORION KL SOURCE I. Astrophysical Journal, 2016, 817, 168.                                     | 4.5 | 10        |
| 71 | Discovery of Striking Difference of Molecular-emission-line Richness in the Potential Proto-binary System NGC 2264 CMM3. Astrophysical Journal, 2017, 847, 108.               | 4.5 | 10        |
| 72 | Spatial Distribution of AlO in a High-mass Protostar Candidate Orion Source I. Astrophysical Journal<br>Letters, 2019, 875, L29.                                              | 8.3 | 10        |

Τομούα Ηιγοτά

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Magnetic Field Structure of Orion Source I. Astrophysical Journal, 2020, 896, 157.                                                                                                                      | 4.5 | 10        |
| 74 | A Face-on Accretion System in High-mass Star Formation: Possible Dusty Infall Streams within 100 AU.<br>Astrophysical Journal, 2017, 849, 23.                                                           | 4.5 | 9         |
| 75 | Compressed Magnetic Field in the Magnetically Regulated Global Collapsing Clump of G9.62+0.19.<br>Astrophysical Journal Letters, 2018, 869, L5.                                                         | 8.3 | 9         |
| 76 | Observations of the Orion Source I Disk and Outflow Interface. Astrophysical Journal, 2020, 889, 155.                                                                                                   | 4.5 | 9         |
| 77 | Chemical evolution of the HC3N and N2H+ molecules in dense cores of the Vela C giant molecular cloud complex. Publication of the Astronomical Society of Japan, 2016, 68, .                             | 2.5 | 8         |
| 78 | Extremely High Excitation SiO Lines in Disk-outflow Systems in Orion Source I. Astrophysical Journal, 2019, 872, 64.                                                                                    | 4.5 | 8         |
| 79 | The Extraordinary Outburst in the Massive Protostellar System NGC 6334 I-MM1: Spatiokinematics of<br>Water Masers during a Contemporaneous Flare Event. Astrophysical Journal, 2021, 908, 175.          | 4.5 | 7         |
| 80 | Structure of the Source I Disk in Orion-KL. Astrophysical Journal, 2022, 924, 107.                                                                                                                      | 4.5 | 7         |
| 81 | Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.                                        | 4.5 | 7         |
| 82 | Multi-frequency radio observations of the radio-loud magnetar XTE J1810â^'197. Publication of the Astronomical Society of Japan, 2021, 73, 1563-1574.                                                   | 2.5 | 6         |
| 83 | Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. Astrophysical<br>Journal, Supplement Series, 2021, 256, 25.                                                               | 7.7 | 5         |
| 84 | Detection of a turbulent gas component associated with a starless core with subthermal turbulence in the Orion A cloud. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4130-4135.        | 4.4 | 4         |
| 85 | Multiple Outflows in the High-mass Cluster-forming Region G25.82–0.17. Astrophysical Journal, 2020,<br>896, 127.                                                                                        | 4.5 | 4         |
| 86 | The C18O core mass function toward Orion A: Single-dish observations. Publication of the Astronomical Society of Japan, 2021, 73, 487-503.                                                              | 2.5 | 3         |
| 87 | Cluster Formation in GGD 12-15: Infall Motion with Rotation of the Natal Clump. Astrophysical<br>Journal, 2022, 928, 76.                                                                                | 4.5 | 1         |
| 88 | Possibility to locate the position of the H <sub>2</sub> O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2017, 13, 113-120. | 0.0 | 0         |
| 89 | A Face-on Accretion System in High Mass Star-Formation: Possible Dusty Infall Streams within 100<br>Astronomical Unit. Proceedings of the International Astronomical Union, 2017, 13, 267-270.          | 0.0 | 0         |
| 90 | Possibility to locate the position of the H <sub>2</sub> O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2018, 14, 393-395. | 0.0 | 0         |

| #  | Article                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Exploring the 100 au Scale Structure of the Protobinary System NGC 2264 CMM3 with ALMA.<br>Astrophysical Journal, 2021, 918, 32. | 4.5 | 0         |