Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7973679/publications.pdf Version: 2024-02-01

VANCLU

#	Article	IF	CITATIONS
1	Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Science Translational Medicine, 2022, 14, eabi7282.	12.4	88
2	Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation. Chemical Engineering Journal, 2021, 410, 127616.	12.7	22
3	In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Science China Materials, 2019, 62, 256-272.	6.3	39
4	In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomaterialia, 2019, 97, 623-636.	8.3	17
5	Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank's solution. Corrosion Science, 2019, 161, 108185.	6.6	38
6	A pH-sensitive self-healing coating for biodegradable magnesium implants. Acta Biomaterialia, 2019, 98, 160-173.	8.3	73
7	Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. Journal of Materials Science and Technology, 2019, 35, 1393-1402.	10.7	23
8	In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomaterialia, 2019, 98, 50-66.	8.3	62
9	Comparative Studies on Degradation Behavior of Pure Zinc in Various Simulated Body Fluids. Jom, 2019, 71, 1414-1425.	1.9	56
10	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	14.9	226
11	In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Interfaces, 2018, 10, 4394-4408.	8.0	82
12	Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials, 2018, 157, 86-97.	11.4	79
13	In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits. Scientific Reports, 2017, 7, 40184.	3.3	14
14	Degradable, absorbable or resorbable—what is the best grammatical modifier for an implant that is eventually absorbed by the body?. Science China Materials, 2017, 60, 377-391.	6.3	51
15	Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia, 2017, 64, 421-436.	8.3	81
16	Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomaterialia, 2017, 62, 418-433.	8.3	65
17	Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn. Scientific Reports, 2016, 6, 21736.	3.3	38
18	Study on the in vitro degradation behavior of pure Mg and WE43 in human bile for 60 days for future usage in biliary. Materials Letters, 2016, 179, 100-103.	2.6	26

Yang Liu

#	Article	IF	CITATIONS
19	Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia, 2016, 41, 351-360.	8.3	95
20	Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti–Bi alloys developed for dental applications. Acta Biomaterialia, 2015, 15, 254-265.	8.3	33
21	Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg–1Ca alloy treated with MEVVA. Colloids and Surfaces B: Biointerfaces, 2015, 133, 99-107.	5.0	23
22	Addition of Zn to the ternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. Journal of Materials Chemistry B, 2015, 3, 6676-6689.	5.8	72