
Aline Viancelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7973114/publications.pdf Version: 2024-02-01

ALINE VIANCELLI

#	Article	IF	CITATIONS
1	Removal of veterinary antibiotics in swine wastewater using microalgae-based process. Environmental Research, 2022, 207, 112192.	3.7	23
2	Trends in biofiltration applied to remove pharmaceuticals and personal care products from wastewater. , 2022, , 267-284.		1
3	Virucidal activity of microalgae extracts harvested during phycoremediation of swine wastewater. Environmental Science and Pollution Research, 2022, 29, 28565-28571.	2.7	3
4	Comportamento de micro-organismos patogênicos durante processo de compostagem de carcaças de suÃnos. Research, Society and Development, 2022, 11, e21011124774.	0.0	0
5	Contamination by pathogenic multidrug resistant bacteria on interior surfaces of ambulances. Research, Society and Development, 2022, 11, e48111225925.	0.0	1
6	Water footprint and productivity in broilers and swine production in Brazil from 2008 to 2018. Environmental Science and Pollution Research, 2022, 29, 73020-73028.	2.7	3
7	Water contamination by enteric virus and superbugs in rural areas and the implications in the One Health context. International Journal of Environmental Studies, 2021, 78, 785-796.	0.7	Ο
8	Phycoremediation: A Sustainable Biorefinery Approach. Microorganisms for Sustainability, 2021, , 101-140.	0.4	1
9	Wastewater Treatment for Bioenergy Purposes Using a Metaproteomic Approach. , 2021, , 253-278.		1
10	Perspectives of biological bacteriophage-based tools for wastewater systems monitoring and sanitary control. , 2021, , 33-50.		2
11	Enteric viruses in lentic and lotic freshwater habitats from Brazil's Midwest and South regions in the Guarani Aquifer area. Environmental Science and Pollution Research, 2021, 28, 31653-31658.	2.7	4
12	Mouse Bioassay Acute and Subchronic Safety Assessment of Biomass from Swine Wastewater Phycoremediation. Waste and Biomass Valorization, 2021, 12, 6811-6822.	1.8	1
13	Toxicity and Enterobacteriaceae Profile in Water in Different Hydrological Events: a Case from South Brazil. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
14	Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. International Journal of Environmental Research and Public Health, 2021, 18, 8862.	1.2	1
15	Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Environmental Technology (United Kingdom), 2020, 41, 682-690.	1.2	12
16	Co-contamination of food products from family farms in an environmental disaster area in Southeast Brazil with pathogenic bacteria and enteric viruses. Archives of Virology, 2020, 165, 715-718.	0.9	6
17	Cladodes applied as decentralized ecotechnology to improve water quality and health in remote communities that lack sanitation. SN Applied Sciences, 2020, 2, 1.	1.5	3
18	A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess and Biosystems Engineering, 2020, 43, 2117-2129.	1.7	33

ALINE VIANCELLI

#	Article	IF	CITATIONS
19	Degradation of estriol (E3) and transformation pathways after applying photochemical removal processes in natural surface water. Water Science and Technology, 2020, 82, 1445-1453.	1.2	9
20	Biogas yield prospection from swine manure and placenta in real-scale systems on circular economy approach. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101598.	1.5	6
21	Hepatitis E Virus in Manure and Its Removal by Psychrophilic anaerobic Biodigestion in Intensive Production Farms, Santa Catarina, Brazil, 2018–2019. Microorganisms, 2020, 8, 2045.	1.6	4
22	Sustainability of Biorefineries: Challenges Associated with Hydrolysis Methods for Biomass Valorization. Clean Energy Production Technologies, 2020, , 255-272.	0.3	3
23	Electrodisinfection of real swine wastewater for water reuse. Environmental Chemistry Letters, 2019, 17, 495-499.	8.3	14
24	Household-based biodigesters promote reduction of enteric virus and bacteria in vulnerable and poverty rural area. Environmental Pollution, 2019, 252, 8-13.	3.7	13
25	Mineral Waste Containing High Levels of Iron from an Environmental Disaster (Bento Rodrigues,) Tj ETQq1 2019, 11, 178-183.	1 0.784314 rgE 1.5	3T /Overlock 7
26	Current Efforts for the Production and Use of Biogas Around the World. Biofuel and Biorefinery Technologies, 2019, , 277-287.	0.1	6
27	Enterobacteria associated with houseflies (Musca domestica) as an infection risk indicator in swine production farms. Acta Tropica, 2018, 185, 13-17.	0.9	17
28	Evaluation of the Effective Inactivation of Enteric Bacteria and Viruses From Swine Effluent and Sludge at Tropical Temperatures. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	5
29	Preservation and reactivation of Candidatus Jettenia asiatica and Anammoxoglobus propionicus using different preservative agents. Chemosphere, 2017, 186, 453-458.	4.2	19
30	Recirculation and Aeration Effects on Deammonification Activity. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	12
31	Settling and survival profile of enteric pathogens in the swine effluent for water reuse purpose. International Journal of Hygiene and Environmental Health, 2016, 219, 883-889.	2.1	6
32	Microbiological quality and genotoxic potential of surface water located above the Guarani aquifer. Environmental Earth Sciences, 2015, 74, 5517-5523.	1.3	6
33	Pathogen Inactivation and the Chemical Removal of Phosphorus from Swine Wastewater. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	20
34	Human and animal enteric virus in groundwater from deep wells, and recreational and network water. Environmental Science and Pollution Research, 2015, 22, 20060-20066.	2.7	25
35	Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Science of the Total Environment, 2014, 479-480, 277-283.	3.9	35
36	Microbial and chemical profile of a ponds system for the treatment of landfill leachate. Waste Management, 2013, 33, 2123-2128.	3.7	18

ALINE VIANCELLI

#	Article	IF	CITATIONS
37	Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens. Chemosphere, 2013, 90, 1539-1544.	4.2	63
38	Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate. Bioresource Technology, 2013, 149, 327-332.	4.8	36
39	Surveillance of human and swine adenovirus, human norovirus and swine circovirus in water samples in Santa Catarina, Brazil. Journal of Water and Health, 2012, 10, 445-452.	1.1	29
40	Surveillance of human viral contamination and physicochemical profiles in a surface water lagoon. Water Science and Technology, 2012, 66, 2682-2687.	1.2	37
41	Detection of circoviruses and porcine adenoviruses in water samples collected from swine manure treatment systems. Research in Veterinary Science, 2012, 93, 538-543.	0.9	28
42	Culturing and molecular methods to assess the infectivity of porcine circovirus from treated effluent of swine manure. Research in Veterinary Science, 2012, 93, 1520-1524.	0.9	11
43	Antibacterial activity of chalcones, hydrazones and oxadiazoles against methicillin-resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 225-230.	1.0	46
44	Microbiological and physicochemical analysis of the coastal waters of southern Brazil. Marine Pollution Bulletin, 2012, 64, 40-48.	2.3	67
45	Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge. Brazilian Archives of Biology and Technology, 2011, 54, 1035-1041.	O.5	26
46	Detection of porcine Circovirus type 2 (PCV2) variants PCV2-1 and PCV2-2 in Brazilian pig population. Research in Veterinary Science, 2009, 87, 157-160.	0.9	16