
Chongxiang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7972738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical response of the constrained nanostructured layer in heterogeneous laminate. Scripta Materialia, 2022, 207, 114310.	5.2	16
2	Activating dispersed strain bands in tensioned nanostructure layer for high ductility: The effects of microstructure inhomogeneity. International Journal of Plasticity, 2022, 149, 103159.	8.8	25
3	A strong and ductile pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142534.	5.6	8
4	Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure. Science China Materials, 2021, 64, 3114-3123.	6.3	9
5	Superior strength-ductility synergy achieved by synergistic strengthening and strain delocalization in a gradient-structured high-manganese steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141853.	5.6	28
6	Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities. International Journal of Plasticity, 2021, 145, 103063.	8.8	45
7	Dense dispersed shear bands in gradient-structured Ni. International Journal of Plasticity, 2020, 124, 186-198.	8.8	77
8	Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint. Extreme Mechanics Letters, 2020, 37, 100686.	4.1	18
9	Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. International Journal of Plasticity, 2019, 123, 196-207.	8.8	139
10	Yielding and fracture behaviors of coarse-grain/ultrafine-grain heterogeneous-structured copper with transitional interface. Transactions of Nonferrous Metals Society of China, 2019, 29, 588-594.	4.2	16
11	<i>In-situ</i> observation of dislocation dynamics near heterostructured interfaces. Materials Research Letters, 2019, 7, 376-382.	8.7	100
12	Synergetic deformation-induced extraordinary softening and hardening in gradient copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 752, 217-222.	5.6	41
13	Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu–30Zn Joints. Acta Metallurgica Sinica (English Letters), 2018, 31, 878-886.	2.9	26
14	Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 113-118.	5.6	125
15	Coupling of RF antennas to large volume helicon plasma. AIP Advances, 2018, 8, .	1.3	9
16	Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials, 2018, 11, 2261.	2.9	21
17	Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. Journal of Alloys and Compounds, 2017, 708, 353-357.	5.5	79
18	Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential. Scientific Reports, 2017, 7, 9199.	3.3	20

CHONGXIANG HUANG

#	Article	IF	CITATIONS
19	On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies. Acta Materialia, 2017, 141, 163-182.	7.9	43
20	Mechanical responses and dynamic failure of nanostructure Cu–Al alloys under uniaxial compression. Mechanics of Materials, 2017, 114, 147-160.	3.2	10
21	Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression. Materials and Design, 2016, 105, 262-267.	7.0	20
22	Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 2016, 116, 43-52.	7.9	507
23	Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy. Journal of Alloys and Compounds, 2016, 658, 1-5.	5.5	17
24	Characterization of Microstructures and Mechanical Properties of Cold-rolled Medium-Mn Steels with Different Annealing Processes. ISIJ International, 2015, 55, 2229-2236.	1.4	22
25	Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium mn steel. Journal of Iron and Steel Research International, 2015, 22, 42-47.	2.8	17
26	An Ideal Ultrafine-Grained Structure for High Strength and High Ductility. Materials Research Letters, 2015, 3, 88-94.	8.7	100
27	Fatigue damage evaluation of low-alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue. International Journal of Fatigue, 2014, 61, 297-303.	5.7	31
28	Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu–11.1at%Al alloy with low stacking fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 274-279.	5.6	27
29	Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 89-95.	5.6	77
30	Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Materials Letters, 2012, 70, 26-29.	2.6	29
31	Significant enhancement of strength in a lamellar-type nanostructured maraging steel subjected to equal-channel angular pressing for 12 passes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 429-433.	5.6	6
32	Shock compression of monocrystalline copper: Experiments, characterization, and analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 424-434.	5.6	22