Paraskevi Panagiotopoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7972712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Dioxide Hydrogenation over Supported Ni and Ru Catalysts. Catalysis Letters, 2021, 151, 888-900.	2.6	15
2	Effect of Operating Conditions on the Performance of Rh/TiO2 Catalyst for the Reaction of LPG Steam Reforming. Catalysts, 2021, 11, 374.	3.5	10
3	Support Effects on the Activity of Ni Catalysts for the Propane Steam Reforming Reaction. Nanomaterials, 2021, 11, 1948.	4.1	9
4	A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Applied Catalysis B: Environmental, 2021, 296, 120210.	20.2	182
5	Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane. Nanomaterials, 2021, 11, 2880.	4.1	23
6	Effect of Support on the Reactive Adsorption of CO from Low CO Concentration Streams on the Surface of Pd Based Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 18722-18738.	3.7	4
7	Effect of the nature of the support, operating and pretreatment conditions on the catalytic performance of supported Ni catalysts for the selective methanation of CO. Catalysis Today, 2020, 355, 832-843.	4.4	17
8	Hydrogen production via steam reforming of propane over supported metal catalysts. International Journal of Hydrogen Energy, 2020, 45, 14849-14866.	7.1	29
9	Reactive adsorption of CO from low CO concentrations streams on the surface of Pd/CeO2 catalysts. Applied Catalysis A: General, 2019, 588, 117305.	4.3	20
10	Nâ€doped TiO ₂ photocatalysts for bacterial inactivation in water. Journal of Chemical Technology and Biotechnology, 2018, 93, 2518-2526.	3.2	30
11	Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity. Applied Catalysis B: Environmental, 2018, 224, 919-927.	20.2	109
12	Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Applied Catalysis B: Environmental, 2018, 236, 162-170.	20.2	81
13	Mechanistic Study of the Selective Methanation of CO over Ru/TiO ₂ Catalysts: Effect of Metal Crystallite Size on the Nature of Active Surface Species and Reaction Pathways. Journal of Physical Chemistry C, 2017, 121, 5058-5068.	3.1	57
14	Hydrogenation of CO 2 over supported noble metal catalysts. Applied Catalysis A: General, 2017, 542, 63-70.	4.3	151
15	Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N2O. Applied Catalysis B: Environmental, 2016, 192, 357-364.	20.2	64
16	Liquidâ€Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid–Ru/C Catalysts. ChemSusChem, 2015, 8, 2046-2054.	6.8	93
17	Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran. ACS Catalysis, 2015, 5, 3988-3994.	11.2	244
18	Ring Activation of Furanic Compounds on Ruthenium-Based Catalysts. Journal of Physical Chemistry C, 2015, 119, 6075-6085.	3.1	29

#	Article	IF	CITATIONS
19	Influence of the Support on the Reaction Network of Ethanol Steam Reforming at Low Temperatures Over Pt Catalysts. Topics in Catalysis, 2015, 58, 1202-1217.	2.8	16
20	Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Applied Catalysis A: General, 2014, 480, 17-24.	4.3	216
21	Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst. Applied Catalysis B: Environmental, 2014, 146, 249-257.	20.2	104
22	Production of renewable hydrogen by reformation of biofuels. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 231-253.	4.1	23
23	Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A, 2014, 392, 223-228.	4.8	178
24	Methanol dehydration to dimethylether over Al2O3 catalysts. Applied Catalysis B: Environmental, 2014, 145, 136-148.	20.2	129
25	Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. Journal of Physical Chemistry C, 2013, 117, 4691-4706.	3.1	101
26	Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catalysis Today, 2013, 209, 91-98.	4.4	119
27	Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts. Journal of Applied Electrochemistry, 2012, 42, 737-743.	2.9	20
28	Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts. International Journal of Hydrogen Energy, 2012, 37, 16333-16345.	7.1	49
29	Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst. Catalysis Today, 2012, 181, 138-147.	4.4	120
30	Chemical Reaction Engineering and Catalysis Issues in Distributed Power Generation Systems. Industrial & Engineering Chemistry Research, 2011, 50, 523-530.	3.7	32
31	Mechanistic Study of the Selective Methanation of CO over Ru/TiO ₂ Catalyst: Identification of Active Surface Species and Reaction Pathways. Journal of Physical Chemistry C, 2011, 115, 1220-1230.	3.1	187
32	Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Applied Catalysis B: Environmental, 2011, 101, 738-746.	20.2	71
33	Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Applied Catalysis A: General, 2010, 390, 35-44.	4.3	89
34	Aldol condensation products during photocatalytic oxidation of ethanol in a photoelectrochemical cell. Applied Catalysis B: Environmental, 2010, 100, 124-132.	20.2	27
35	Kinetic and mechanistic studies of the water–gas shift reaction on Pt/TiO2 catalyst. Journal of Catalysis, 2009, 264, 117-129.	6.2	168
36	Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. Journal of Catalysis, 2009, 267, 57-66.	6.2	141

#	Article	IF	CITATIONS
37	Selective methanation of CO over supported Ru catalysts. Applied Catalysis B: Environmental, 2009, 88, 470-478.	20.2	221
38	Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts. Topics in Catalysis, 2008, 51, 2-12.	2.8	86
39	Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metal metallic phase on catalytic performance. Applied Catalysis A: General, 2008, 344, 45-54.	4.3	236
40	Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts. Journal of Catalysis, 2008, 260, 141-149.	6.2	97
41	A comparative study of the water-gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3, MOx/TiO2) metal oxide carriers. Catalysis Today, 2007, 127, 319-329.	4.4	83
42	Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catalysis Today, 2006, 112, 49-52.	4.4	262
43	Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water?gas shift reaction. Journal of Catalysis, 2004, 225, 327-336.	6.2	241
44	Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water?gas shift reaction. Journal of Catalysis, 2004, 225, 327-327.	6.2	9