Xu Zhen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7972106/xu-zhen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

70 g-index

70 g-index

70 ext. papers ext. citations avg, IF

70 avg, IF

70 L-index

#	Paper Paper	IF	Citations
69	Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor <i>Advanced Science</i> , 2022 , e2104125	13.6	6
68	Mobile Phone Flashlight Excited Red Afterglow Bioimaging Advanced Materials, 2022, e2201280	24	2
67	A Sub-6 nm MnFeO-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy <i>Biomaterials</i> , 2022 , 284, 121533	15.6	1
66	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
65	Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. <i>Biomaterials</i> , 2021 , 280, 121261	15.6	4
64	The development of phosphorescent probes for and bioimaging. <i>Biomaterials Science</i> , 2021 , 9, 285-300	7.4	33
63	Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. <i>Biomaterials Science</i> , 2021 , 9, 1363-1373	7.4	6
62	Development of mesoporous silica-based nanoprobes for optical bioimaging applications. <i>Biomaterials Science</i> , 2021 , 9, 3603-3620	7.4	7
61	Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. <i>Small</i> , 2021 , 17, e2004723	11	61
60	Polymer-based activatable optical probes for tumor fluorescence and photoacoustic imaging. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2020 , 12, e1593	9.2	12
59	Responsive boron biomaterials and their biomedical applications. <i>Science China Chemistry</i> , 2020 , 63, 648	8 - 6 6 4	23
58	Metabolizable Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging. <i>Advanced Materials</i> , 2019 , 31, e1808166	24	226
57	A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. <i>Nature Communications</i> , 2019 , 10, 2064	17.4	127
56	Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. <i>ACS Nano</i> , 2019 , 13, 5816-5825	16.7	108
55	A Semiconducting Polymer Nano-prodrug for Hypoxia-Activated Photodynamic Cancer Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 5981-5985	3.6	25
54	Thermoresponsive Semiconducting Polymer Nanoparticles for Contrast-Enhanced Photoacoustic Imaging. <i>Advanced Functional Materials</i> , 2019 , 29, 1903461	15.6	43
53	Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. <i>Theranostics</i> , 2019 , 9, 7417-7430	12.1	21

(2018-2019)

A Semiconducting Polymer Nano-prodrug for Hypoxia-Activated Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019 , 58, 5920-5924	16.4	208
pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. <i>Nano Research</i> , 2019 , 12, 49-55	10	53
Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. <i>Small</i> , 2019 , 15, e1804105	11	200
Cancer Phototherapy: Recent Advances in Cell Membrane Lamouflaged Nanoparticles for Cancer Phototherapy (Small 1/2019). <i>Small</i> , 2019 , 15, 1970002	11	1
The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. <i>Nature Communications</i> , 2018 , 9, 840	17.4	509
Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. <i>Advanced Materials</i> , 2018 , 30, e1801331	24	116
Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy: A Comparative Study. <i>Advanced Materials</i> , 2018 , 30, e1705980	24	371
Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. <i>ACS Nano</i> , 2018 , 12, 2643-2651	16.7	209
Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. <i>ACS Nano</i> , 2018 , 12, 1801-1810	16.7	232
Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. <i>Nano Letters</i> , 2018 , 18, 1498-1505	11.5	138
Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. <i>Angewandte Chemie</i> , 2018 , 130, 7930-7934	3.6	60
Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. <i>Angewandte Chemie</i> , 2018 , 130, 4002-4006	3.6	49
Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3938-3942	16.4	190
Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. <i>ACS Nano</i> , 2018 , 12, 8520-8530	16.7	215
Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. <i>Nano Research</i> , 2018 , 11, 5258-5280	10	28
Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols <i>ACS Applied Bio Materials</i> , 2018 , 1, 1147-1153	4.1	18
Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7804-7808	16.4	223
A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite. <i>Analytical Chemistry</i> , 2018 , 90, 9301-9307	7.8	102
	Angewandte Chemie - International Edition, 2019, 58, 5920-5924 pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12, 49-55 Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. Small, 2019, 15, e1804105 Cancer Phototherapy: Recent Advances in Cell Membrane Tamouflaged Nanoparticles for Cancer Phototherapy (Small 1/2019). Small, 2019, 15, 1970002 The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840 Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. Advanced Materials, 2018, 30, e1801331 Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials, 2018, 30, e1705980 Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651 Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 2018, 12, 1801-1810 Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. Nano Letters, 2018, 18, 1498-1505 Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angewandte Chemie, 2018, 130, 7930-7934 Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. Angewandte Chemie, 2018, 130, 4002-4006 Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. Angewandte Chemie, 2018, 13, 57, 3938-3942 Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Photothermal Therapy. Angewandte Chemie, 1018, 130, 4002-4006 Activatable Semiconducting Oligo	Angewandte Chemie - International Edition, 2019, 58, 5920-5924 PH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12, 49-55 Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy. Small, 2019, 15, e1804105 Cancer Phototherapy: Recent Advances in Cell MembraneEamouflaged Nanoparticles for Cancer Phototherapy. Small, 1/2019. Small, 2019, 15, 1970002 The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840 Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors. Advanced Materials, 2018, 30, e1801331 Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials, 2018, 30, e1705980 Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651 Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 2018, 12, 1801-1810 167 Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. Nano Letters, 2018, 18, 1499-1505 Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Therapy. Angewandte Chemie, 2018, 130, 4002-4006 Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy. Angewandte Chemie - International Edition, 2018, 57, 3938-3942 Cell Membrane Coated Semiconducting Polymer Nanococktail for Imaging-Guided Phototheranostics. ACS Nano, 2018, 12, 8520-8530 109 Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Research, 2018, 11, 5258-5280 Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Fluorescence,

34	Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging. <i>Advanced Functional Materials</i> , 2017 , 27, 1605397	15.6	102
33	Near-infrared absorbing amphiphilic semiconducting polymers for photoacoustic imaging. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 4406-4409	7-3	33
32	Photoacoustic Imaging: Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging (Adv. Funct. Mater. 8/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
31	Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. <i>Biomaterials</i> , 2017 , 127, 97-106	15.6	105
30	Nanoprobes: Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite (Adv. Mater. 6/2017). <i>Advanced Materials</i> , 2017 , 29,	24	4
29	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. <i>Small</i> , 2017 , 13, 1604139	11	63
28	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. <i>Advanced Materials</i> , 2017 , 29, 1604764	24	194
27	Light-driven liquid metal nanotransformers for biomedical theranostics. <i>Nature Communications</i> , 2017 , 8, 15432	17.4	214
26	Amphiphilic Semiconducting Oligomer for Near-Infrared Photoacoustic and Fluorescence Imaging. <i>ACS Applied Materials & Discrete Materia</i>	9.5	61
25	Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. <i>ACS Nano</i> , 2017 , 11, 4174-4182	16.7	168
24	Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. <i>Biomaterials</i> , 2017 , 119, 1-8	15.6	136
23	Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. <i>ACS Nano</i> , 2017 , 11, 358-367	16.7	131
22	Nanoparticle Regrowth Enhances Photoacoustic Signals of Semiconducting Macromolecular Probe for In Vivo Imaging. <i>Advanced Materials</i> , 2017 , 29, 1703693	24	126
21	Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. <i>Nature Biotechnology</i> , 2017 , 35, 1102-1110	44.5	571
20	Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. <i>Biomaterials</i> , 2017 , 145, 165	8-1 5 9	135
19	Organic Nanoparticles: Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging (Adv. Mater. 33/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
18	Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. <i>Advanced Materials</i> , 2017 , 29, 1606665	24	259
17	Chemically treated carbon black waste and its potential applications. <i>Journal of Hazardous Materials</i> , 2017 , 321, 62-72	12.8	40

LIST OF PUBLICATIONS

16	Toxicity assessment of carbon black waste: A by-product from oil refineries. <i>Journal of Hazardous Materials</i> , 2017 , 321, 600-610	12.8	21
15	Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species. <i>ACS Nano</i> , 2016 , 10, 6400-9	16.7	228
14	Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. <i>ACS Nano</i> , 2016 , 10, 4472-8	31 ^{16.7}	389
13	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. <i>Chemical Science</i> , 2016 , 7, 5118-5125	9.4	97
12	Rapid toxicity screening of gasification ashes. Waste Management, 2016, 50, 93-104	8.6	15
11	Synthesis, cellular uptake, and biodistribution of whey-rich nanoparticles. <i>Macromolecular Bioscience</i> , 2014 , 14, 1149-59	5.5	7
10	Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. <i>Biomaterials</i> , 2014 , 35, 6439-53	15.6	80
9	Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. <i>Biomaterials</i> , 2013 , 34, 1372-82	15.6	106
8	Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. <i>ACS Applied Materials & English (Materials & English)</i> , 12638-45	9.5	75
7	Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. <i>Biomaterials</i> , 2013 , 34, 4667-79	15.6	176
6	Synthesis of paclitaxel-conjugated Etyclodextrin polyrotaxane and its antitumor activity. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7272-7	16.4	71
5	Synthesis of Paclitaxel-Conjugated Ecyclodextrin Polyrotaxane and Its Antitumor Activity. <i>Angewandte Chemie</i> , 2013 , 125, 7413-7418	3.6	9
4	Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 5325-32	9.5	41
3	The effect of hydrophilic chain length and iRGD on drug delivery from poly(Ecaprolactone)-poly(N-vinylpyrrolidone) nanoparticles. <i>Biomaterials</i> , 2011 , 32, 9525-35	15.6	101
2	Cellular entry fashion of hollow milk protein spheres. <i>Soft Matter</i> , 2011 , 7, 11526	3.6	25
1	Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications. <i>CCS Chemistry</i> ,2950-2968	7.2	2