
Taskeen Niaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/797204/publications.pdf Version: 2024-02-01

TASKEEN NIAZ

#	Article	IF	CITATIONS
1	Milk phospholipids-based nanostructures functionalized with rhamnolipids and bacteriocin: Intrinsic and synergistic antimicrobial activity for cheese preservation. Food Bioscience, 2022, 47, 101442.	4.4	11
2	Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. Food and Bioprocess Technology, 2022, 15, 1284-1298.	4.7	13
3	Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. International Journal of Biological Macromolecules, 2021, 169, 171-182.	7.5	11
4	Improving carvacrol bioaccessibility using core–shell carrier-systems under simulated gastrointestinal digestion. Food Chemistry, 2021, 353, 129505.	8.2	10
5	Diffusion kinetics of nisin from composite coatings reinforced with nano-rhamnosomes. Journal of Food Engineering, 2021, 288, 110143.	5.2	17
6	Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. International Journal of Biological Macromolecules, 2020, 156, 1366-1380.	7.5	25
7	Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. International Journal of Biological Macromolecules, 2019, 138, 1006-1018.	7.5	19
8	Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT - Food Science and Technology, 2019, 116, 108583.	5.2	45
9	Potential of polymer stabilized nano-liposomes to enhance antimicrobial activity of nisin Z against foodborne pathogens. LWT - Food Science and Technology, 2018, 96, 98-110.	5.2	57
10	Polyelectrolyte Multicomponent Colloidosomes Loaded with Nisin Z for Enhanced Antimicrobial Activity against Foodborne Resistant Pathogens. Frontiers in Microbiology, 2017, 8, 2700.	3.5	49
11	Prospectives of Antihypertensive Nano-ceuticals as Alternative Therapeutics. Current Drug Targets, 2017, 18, 1269-1280.	2.1	10
12	Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. International Journal of Biological Macromolecules, 2016, 91, 180-187.	7.5	26
13	Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics. Carbohydrate Polymers, 2016, 142, 268-274.	10.2	46