
Sebastian Polarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7971614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc Oxide Nanoparticles with Defects. Advanced Functional Materials, 2005, 15, 1945-1954.	7.8	499
2	On the Role of Oxygen Defects in the Catalytic Performance of Zinc Oxide. Angewandte Chemie - International Edition, 2006, 45, 2965-2969.	7.2	235
3	Nanoporous Materials. Journal of Nanoscience and Nanotechnology, 2002, 2, 581-612.	0.9	218
4	Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. Chemical Communications, 2002, , 2593-2604.	2.2	182
5	A New Class of Surfactants with Multinuclear, Inorganic Head Groups. Journal of the American Chemical Society, 2010, 132, 5315-5321.	6.6	171
6	From Cyclodextrin Assemblies to Porous Materials by Silica Templating We thank the Max-Planck society for funding Angewandte Chemie - International Edition, 2001, 40, 4417.	7.2	164
7	Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. Journal of the American Chemical Society, 2016, 138, 3076-3084.	6.6	160
8	Chemical Vapor Synthesis of Size-Selected Zinc Oxide Nanoparticles. Small, 2005, 1, 540-552.	5.2	144
9	Colloidal Organization and Clusters: Self-Assembly of Polyoxometalate-Surfactant Complexes towards Three-Dimensional Organized Structures. ChemPhysChem, 2001, 2, 457-461.	1.0	135
10	Silica–Carbon Nanocomposites—A New Concept for the Design of Solar Absorbers. Advanced Functional Materials, 2002, 12, 197.	7.8	132
11	Preparation of Porous Silica Materials via Solâ^Gel Nanocasting of Nonionic Surfactants:  A Mechanistic Study on the Self-Aggregation of Amphiphiles for the Precise Prediction of the Mesopore Size. Journal of Physical Chemistry B, 2001, 105, 10473-10483.	1.2	128
12	Preparation of High-Surface-Area Zinc Oxide with Ordered Porosity, Different Pore Sizes, and Nanocrystalline Walls. Chemistry - A European Journal, 2007, 13, 592-597.	1.7	123
13	Mesosynthesis of ZnOâ^'Silica Composites for Methanol Nanocatalysis. Journal of the American Chemical Society, 2005, 127, 12028-12034.	6.6	106
14	Structure-Property-Function Relationships in Nanoscale Oxide Sensors: A Case Study Based on Zinc Oxide. Advanced Functional Materials, 2007, 17, 1385-1391.	7.8	103
15	"Open and Shut―for Guests in Molybdenum-Oxide-Based Giant Spheres, Baskets, and Rings Containing the Pentagon as a Common Structural Element. Angewandte Chemie - International Edition, 1999, 38, 3241-3245.	7.2	100
16	The Interplay of Colloidal Organization and Oxo-Cluster Chemistry: Polyoxometalate-Silica Hybrids—Materials with a Nanochemical Function. Advanced Materials, 2000, 12, 1503-1507.	11.1	99
17	Shape Matters: Anisotropy of the Morphology of Inorganic Colloidal Particles – Synthesis and Function. Advanced Functional Materials, 2011, 21, 3214-3230.	7.8	98
18	Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein Journal of Nanotechnology, 2017, 8, 688-714.	1.5	93

#	Article	IF	CITATIONS
19	Hybrid Surfactant Systems with Inorganic Constituents. Angewandte Chemie - International Edition, 2014, 53, 946-954.	7.2	87
20	First Preparation of Nanocrystalline Zinc Silicate by Chemical Vapor Synthesis Using an Organometallic Single-Source Precursor. Chemistry - A European Journal, 2004, 10, 1565-1575.	1.7	86
21	Mixed Micellar Phases of Nonmiscible Surfactants:Â Mesoporous Silica with Bimodal Pore Size Distribution via the Nanocasting Process. Langmuir, 2004, 20, 7811-7819.	1.6	83
22	Nucleation and Growth of ZnO in Organic Solvents - an in Situ Study. Journal of the American Chemical Society, 2008, 130, 16601-16610.	6.6	75
23	Preparation of a Periodically Ordered Mesoporous Organosilica Material Using Chiral Building Blocks. Advanced Materials, 2006, 18, 1206-1209.	11.1	72
24	Effects of Primary and Secondary Surface Groups in Enantioselective Catalysis Using Nanoporous Materials with Chiral Walls. Journal of the American Chemical Society, 2010, 132, 6558-6565.	6.6	70
25	Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals. Journal of Applied Physics, 2010, 107, .	1.1	68
26	Bolaform surfactants with polyoxometalate head groups and their assembly into ultra-small monolayer membrane vesicles. Nature Communications, 2012, 3, 1299.	5.8	65
27	Smart Inorganic Surfactants: More than Surface Tension. Angewandte Chemie - International Edition, 2012, 51, 5995-5999.	7.2	65
28	Hierachical Porous Carbon Structures from Cellulose Acetate Fibers. Chemistry of Materials, 2002, 14, 2940-2945.	3.2	64
29	Molecular Encoding at the Nanoscale: From Complex Cubes to Bimetallic Oxides. Angewandte Chemie - International Edition, 2005, 44, 7892-7896.	7.2	58
30	Amino Acid Silica Hybrid Materials with Mesoporous Structure and Enantiopure Surfaces. Angewandte Chemie - International Edition, 2008, 47, 9513-9517.	7.2	58
31	Molecular Precursor Route to a Metastable Form of Zinc Oxide. Chemistry of Materials, 2010, 22, 4263-4270.	3.2	58
32	A Systematic Study on Zinc Oxide Materials Containing Group I Metals (Li, Na, K)â^'Synthesis from Organometallic Precursors, Characterization, and Properties. Chemistry of Materials, 2009, 21, 3889-3897.	3.2	55
33	Solventless Acid-Free Synthesis of Mesostructured Titania: Nanovessels for Metal Complexes and Metal Nanoclusters. Advanced Functional Materials, 2003, 13, 30-36.	7.8	54
34	Shape Anisotropy Influencing Functional Properties: Trigonal Prismatic ZnO Nanoparticles as an Example. Advanced Functional Materials, 2011, 21, 295-304.	7.8	54
35	Porous and Shapeâ€Anisotropic Single Crystals of the Semiconductor Perovskite CH ₃ NH ₃ PbI ₃ from a Singleâ€&ource Precursor. Angewandte Chemie - International Edition, 2015, 54, 1341-1346.	7.2	54
36	Organosilica Materials with Bridging Phenyl Derivatives Incorporated into the Surfaces of Mesoporous Solids. Advanced Functional Materials, 2008, 18, 1272-1280.	7.8	52

#	Article	IF	CITATIONS
37	Cyclodextrin-based Porous Silica Materials as in Situ Chemical "Nanoreactors―for the Preparation of Variable Metalâ^'Silica Hybrids. Chemistry of Materials, 2001, 13, 3915-3919.	3.2	50
38	Sub-Nanometer Noble-Metal Particle Host Synthesis in Porous Silica Monoliths. Advanced Materials, 2001, 13, 1333.	11.1	50
39	Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not?. Chemistry of Materials, 2010, 22, 1472-1482.	3.2	50
40	Influence of Spatial Restrictions on Equilibrium Reactions:  A Case Study about the Excimer Formation of Pyrene. Journal of Physical Chemistry B, 2003, 107, 5081-5087.	1.2	48
41	Chemistry in Confining Reaction Fields with Special Emphasis on Nanoporous Materials. Chemistry - A European Journal, 2008, 14, 9816-9829.	1.7	48
42	Monolithic Zinc Oxide Aerogels from Organometallic Solâ^'Gel Precursors. Chemistry of Materials, 2010, 22, 5129-5136.	3.2	47
43	Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for Optical Applications Like Full Inorganic UV Protection. Chemistry of Materials, 2012, 24, 1771-1778.	3.2	46
44	Consecutive fragmentations of the cubane-like zinc cluster [CH3Zn(O-i-C3H7)]4upon electron ionization. Physical Chemistry Chemical Physics, 2005, 7, 1049-1053.	1.3	45
45	Cu/ZnO aggregates in siliceous mesoporous matrices: Development of a new model methanol synthesis catalyst. Journal of Catalysis, 2006, 241, 446-455.	3.1	44
46	Hierarchical Zinc Oxide Materials with Multiple Porosity Prepared by Ultrafast Temperature Gradient Chemical Gasâ€Phase Synthesis. Advanced Materials, 2012, 24, 543-548.	11.1	43
47	Catalytically Doped Semiconductors for Chemical Gas Sensing: Aerogelâ€Like Aluminumâ€Containing Zinc Oxide Materials Prepared in the Gas Phase. Advanced Functional Materials, 2016, 26, 3424-3437.	7.8	42
48	Addedâ€Value Surfactants. Chemistry - A European Journal, 2018, 24, 18842-18856.	1.7	42
49	Polyoxometalate Surfactants as Unique Molecules for Interfacial Self-Assembly. Journal of Physical Chemistry Letters, 2012, 3, 322-326.	2.1	41
50	Organometallics Meet Colloid Chemistry:Â A Case Study in Three Phases Based on Molecular Carbonyl Precursors Containing Zinc and Manganese. Journal of the American Chemical Society, 2007, 129, 371-375.	6.6	38
51	Mesoporous Organosilica Nanoparticles Containing Superacid and Click Functionalities Leading to Cooperativity in Biocidal Coatings. ACS Applied Materials & amp; Interfaces, 2015, 7, 1021-1029.	4.0	37
52	Resonant transport and near-field effects in photonic glasses. Physical Review A, 2017, 96, .	1.0	33
53	Organic Ligands Made Porous: Magnetic and Catalytic Properties of Transition Metals Coordinated to the Surfaces of Mesoporous Organosilica. Advanced Functional Materials, 2010, 20, 1133-1143.	7.8	31
54	Adsorption in Periodically Ordered Mesoporous Organosilica Materials Studied by in Situ Small-Angle X-ray Scattering and Small-Angle Neutron Scattering. Langmuir, 2010, 26, 6583-6592.	1.6	31

#	Article	IF	CITATIONS
55	Centrifugal Field-Induced Colloidal Assembly: From Chaos to Order. ACS Nano, 2015, 9, 6944-6950.	7.3	31
56	Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case. Nanoscale, 2015, 7, 16969-16982.	2.8	30
57	Self-Assembly of Methylzinc–Polyethylene Glycol Amphiphiles and Their Application to Materials Synthesis. Angewandte Chemie - International Edition, 2007, 46, 2426-2430.	7.2	28
58	Dynamical Changes in the Cu–ZnO x Interaction Observed in a Model Methanol Synthesis Catalyst. Catalysis Letters, 2009, 128, 49-56.	1.4	28
59	Aerosolâ€5ynthesis of Mesoporous Organosilica Nanoparticles with Highly Reactive, Superacidic Surfaces Comprising Sulfonic Acid Entities. Advanced Functional Materials, 2014, 24, 1140-1150.	7.8	28
60	Directional Materials—Nanoporous Organosilica Monoliths with Multiple Gradients Prepared Using Click Chemistry. Angewandte Chemie - International Edition, 2015, 54, 10465-10469.	7.2	28
61	Hybrid Surfactants with <i>N</i> â€Heterocyclic Carbene Heads as a Multifunctional Platform for Interfacial Catalysis. Chemistry - A European Journal, 2017, 23, 18129-18133.	1.7	27
62	Redox Behavior of Nanostructured Molybdenum Oxideâ^'Mesoporous Silica Hybrid Materials. Chemistry of Materials, 2003, 15, 3586-3593.	3.2	26
63	Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates. Journal of the Electrochemical Society, 2016, 163, D447-D452.	1.3	25
64	Nanoporous materials. Journal of Nanoscience and Nanotechnology, 2002, 2, 581-612.	0.9	25
65	Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head. ACS Nano, 2016, 10, 10041-10048.	7.3	23
66	Impact of Crystal Surface on Photoexcited States in Organic–Inorganic Perovskites. Advanced Functional Materials, 2017, 27, 1604995.	7.8	23
67	Panoscopic Structures by Hierarchical Cascade Selfâ€Assembly of Inorganic Surfactants with Magnetic Heads Containing Dysprosium Ions. Angewandte Chemie - International Edition, 2013, 52, 13665-13670.	7.2	21
68	Nanoarchitecture Effects on Persistent Room Temperature Photoconductivity and Thermal Conductivity in Ceramic Semiconductors: Mesoporous, Yolk–Shell, and Hollow ZnO Spheres. Crystal Growth and Design, 2014, 14, 4593-4601.	1.4	21
69	Peering into the Mechanism of Low-Temperature Synthesis of Bronze-type TiO ₂ in Ionic Liquids. Crystal Growth and Design, 2017, 17, 5586-5601.	1.4	21
70	Tunable high-index photonic glasses. Physical Review Materials, 2019, 3, .	0.9	21
71	Electron Transfer in Selfâ€Assembled Micelles Built by Conductive Polyoxometalateâ€Surfactants Showing Batteryâ€Like Behavior. Advanced Materials Interfaces, 2018, 5, 1701430.	1.9	20
72	Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials. ACS Applied Materials & Interfaces, 2017, 9, 1077-1085.	4.0	19

#	Article	IF	CITATIONS
73	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. Molecules, 2016, 21, 542.	1.7	18
74	Biomimetic crystallization of anisotropic zinc oxide nanoparticles in the homogeneous phase: shape control by surface additives applied under thermodynamic or kinetic control. RSC Advances, 2012, 2, 5298.	1.7	17
75	Probing Functional Group Specific Surface Interactions in Porous Solids Using ESR Spectroscopy as a Sensitive and Quantitative Tool. Journal of Physical Chemistry C, 2013, 117, 2805-2816.	1.5	17
76	Li-doped ZnO nanorods with single-crystal quality – non-classical crystallization and self-assembly into mesoporous materials. CrystEngComm, 2014, 16, 1525-1531.	1.3	17
77	NHC-Metallosurfactants as Active Polymerization Catalysts. Langmuir, 2019, 35, 16514-16520.	1.6	17
78	Stimuli-responsive mesoporous organosilica materials containing pH-sensitive organic dyes. Microporous and Mesoporous Materials, 2013, 171, 35-43.	2.2	16
79	Multiple scale investigation of molecular diffusion inside functionalized porous hosts using a combination of magnetic resonance methods. Physical Chemistry Chemical Physics, 2015, 17, 15976-15988.	1.3	16
80	Light-Triggered Boost of Activity of Catalytic Bola-Type Surfactants by a Plasmonic Metal–Support Interaction Effect. ACS Applied Materials & Interfaces, 2019, 11, 15936-15944.	4.0	16
81	Functional Gradient Inverse Opal Carbon Monoliths with Directional and Multinary Porosity. Advanced Materials, 2017, 29, 1603356.	11.1	15
82	The molecular path to inorganic materials – Zinc oxide and beyond. Inorganica Chimica Acta, 2010, 363, 4148-4157.	1.2	14
83	Metathesiscatalysts in confining reaction fields—confinement effects vs. surface effects. Dalton Transactions, 2010, 39, 577-584.	1.6	14
84	Size-selected gold clusters on porous titania as the most "gold-efficient―heterogeneous catalysts. Physical Chemistry Chemical Physics, 2014, 16, 11017-11023.	1.3	14
85	Freeâ€Standing Photonic Glasses Fabricated in a Centrifugal Field. Small, 2017, 13, 1701392.	5.2	14
86	Organometallic, Nonclassical Surfactant with Gemini Design Comprising π-Conjugated Constituents Ready for Modification. ACS Omega, 2018, 3, 8854-8864.	1.6	14
87	Temperature-Stable and Optically Transparent Thin-Film Zinc Oxide Aerogel Electrodes As Model Systems for 3D Interpenetrating Organic–Inorganic Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6522-6529.	4.0	12
88	Materials Surgery – Reactivity Differences of Organic Groups in Hybrids. Advanced Functional Materials, 2011, 21, 2953-2959.	7.8	11
89	Microwave Induced Crystallization of the Hybrid Perovskite CH ₃ NH ₃ PbI ₃ from a Supramolecular Single-Source Precursor. Chemistry of Materials, 2016, 28, 4134-4138.	3.2	11
90	Fourfold action of surfactants with superacid head groups: polyoxometalate–silicone nanocomposites as promising candidates for proton-conducting materials. New Journal of Chemistry, 2016, 40, 919-922.	1.4	11

#	Article	IF	CITATIONS
91	Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO 2 nanorod arrays. Journal of Crystal Growth, 2018, 494, 26-35.	0.7	11
92	Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand. Beilstein Journal of Nanotechnology, 2020, 11, 466-479.	1.5	11
93	Morphogenesis of Magnetite Mesocrystals: Interplay between Nanoparticle Morphology and Solvation Shell. Chemistry of Materials, 2021, 33, 9119-9130.	3.2	11
94	The Effect of Centrifugal Force on the Assembly and Crystallization of Binary Colloidal Systems: Towards Structural Gradients. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 103-110.	0.3	10
95	Amphiphilic hybrids containing inorganic constituent: More than soap. Current Opinion in Colloid and Interface Science, 2015, 20, 151-160.	3.4	10
96	Facet-controlled preparation of hybrid perovskite microcrystals in the gas phase and the remarkable effect on optoelectronic properties. CrystEngComm, 2017, 19, 4615-4621.	1.3	10
97	Molecular Semiconductor Surfactants with Fullerenol Heads and Colored Tails for Carbon Dioxide Photoconversion. Angewandte Chemie - International Edition, 2019, 58, 15620-15625.	7.2	10
98	Creating Directionality in Nanoporous Carbon Materials: Adjustable Combinations of Structural and Chemical Gradients. Advanced Functional Materials, 2019, 29, 1904058.	7.8	10
99	Chromium containing zinc oxide materials from organobimetallic precursors. Dalton Transactions, 2010, 39, 2232.	1.6	9
100	Time-, spectral- and spatially resolved EPR spectroscopy enables simultaneous monitoring of diffusion of different guest molecules in nano-pores. Journal of Magnetic Resonance, 2017, 283, 45-51.	1.2	9
101	Nanomorphology Effects in Semiconductors with Native Ferromagnetism: Hierarchical Europium (II) Oxide Tubes Prepared via a Topotactic Nanostructure Transition. Advanced Materials, 2018, 30, 1703612.	11.1	9
102	Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards. ACS Applied Materials & Interfaces, 2018, 10, 23638-23646.	4.0	9
103	Metal–supported catalysts encapsulated in mesoporous solids: Challenges and opportunities of a model concept. Physica Status Solidi (B): Basic Research, 2013, 250, 1081-1093.	0.7	8
104	Maximizing Headgroup Repulsion: Hybrid Surfactants with Ultrahighly Charged Inorganic Heads and Their Unusual Self-Assembly. Langmuir, 2016, 32, 10920-10927.	1.6	8
105	Magnetoâ€Adaptive Surfactants Showing Antiâ€Curie Behavior and Tunable Surface Tension as Porogens for Mesoporous Particles with 12â€Fold Symmetry. Angewandte Chemie - International Edition, 2017, 56, 5475-5479.	7.2	8
106	Nonequilibrium Catalyst Materials Stabilized by the Aerogel Effect: Solvent Free and Continuous Synthesis of Gamma-Alumina with Hierarchical Porosity. ACS Applied Materials & Interfaces, 2017, 9, 11599-11608.	4.0	8
107	Great Location: About Effects of Surface Bound Neighboring Groups for Passive and Active Fineâ€Tuning of CO ₂ Adsorption Properties in Model Carbon Capture Materials. Advanced Materials, 2021, 33, e2007734.	11.1	8
108	Wiring functional groups in mesoporous organosilica materials. Journal of Materials Chemistry C, 2015, 3, 2195-2203.	2.7	7

7

#	Article	IF	CITATIONS
109	Sweet surfactants: packing parameter-invariant amphiphiles as emulsifiers and capping agents for morphology control of inorganic particles. Soft Matter, 2018, 14, 7214-7227.	1.2	7
110	Gas phase synthesis of titania with aerogel character and its application as a support in oxidation catalysis. Journal of Materials Chemistry, 2010, 20, 10032.	6.7	6
111	Simultaneous Monitoring of Macroscopic and Microscopic Diffusion of Guest Molecules in Silica and Organosilica Aerogels by Spatially and Time-Resolved Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 17474-17479.	1.5	6
112	Magnetoâ€Adaptive Surfactants Showing Antiâ€Curie Behavior and Tunable Surface Tension as Porogens for Mesoporous Particles with 12â€Fold Symmetry. Angewandte Chemie, 2017, 129, 5567-5571.	1.6	6
113	Low Temperature Reaction of Molecular Zinc Oxide Precursors in Ionic Liquids Leading to Ionogel Nanoparticles with Shape Anisotropy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 93-100.	0.6	6
114	Controlling the density of hydrothermally grown rutile TiO2 nanorods on anatase TiO2 films. Surfaces and Interfaces, 2019, 15, 141-147.	1.5	6
115	Copolymerization of Mesoporous Styreneâ€Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuliâ€Responsive Remediation of Water. ChemSusChem, 2020, 13, 5100-5111.	3.6	6
116	A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials. Beilstein Journal of Nanotechnology, 2015, 6, 2161-2172.	1.5	5
117	Plug and play synthesis of an organic/inorganic hybrid electrode with adjustable porosity: redox-active organosilica confined in mesoporous carbon. Journal of Materials Chemistry A, 2015, 3, 22017-22020.	5.2	5
118	ZnO Nanoparticle Formation from the Molecular Precursor [MeZnO <i>t</i> Bu] ₄ by Ozone Treatment in Ionic Liquids: inâ€situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 31-40.	0.6	5
119	Tolerance in superstructures formed from high-quality colloidal ZnO nanoparticles with hexagonal cross-section. CrystEngComm, 2019, 21, 5137-5144.	1.3	5
120	Easy, efficient and versatile one-pot synthesis of Janus-type-substituted fullerenols. Beilstein Journal of Organic Chemistry, 2019, 15, 901-905.	1.3	5
121	Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica. Microporous and Mesoporous Materials, 2020, 294, 109879.	2.2	5
122	Aggregationâ€Induced Improvement of Catalytic Activity by Innerâ€Aggregate Electronic Communication of Metalâ€Fullereneâ€Based Surfactants. ChemCatChem, 2020, 12, 2726-2731.	1.8	5
123	Stimuliâ€Responsive Particleâ€Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 8902-8906.	7.2	5
124	Ligandâ€Programmed Consecutive Symmetry Break(s) in Nanoparticle Based Materials Showing Emergent Phenomena: Transitioning from Sixfold to Threefold Symmetry in Anisotropic ZnO Colloids. Advanced Functional Materials, 2021, 31, 2009104.	7.8	5
125	Ferro-self-assembly: magnetic and electrochemical adaptation of a multiresponsive zwitterionic metalloamphiphile showing a shape-hysteresis effect. Chemical Science, 2021, 12, 270-281.	3.7	5
126	"Dirty nanostructures― aerosol-assisted synthesis of temperature stable mesoporous metal oxide semiconductor spheres comprising hierarchically assembled zinc oxide nanocrystals controlled via impurities. Nanoscale, 2014, 6, 1698-1706.	2.8	4

#	Article	IF	CITATIONS
127	Negative and Positive Confinement Effects in Chiral Separation Chromatography Monitored with Molecular-Scale Precision by In-Situ Electron Paramagnetic Resonance Techniques. Langmuir, 2017, 33, 11968-11976.	1.6	4
128	Localization of Guest Molecules in Nanopores by Pulsed EPR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 5376-5384.	1.5	4
129	EurOgels: A ferromagnetic semiconductor with a porous structure prepared <i>via</i> the assembly of hybrid nanorods. Nanoscale, 2018, 10, 19272-19276.	2.8	3
130	The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Advances, 2020, 10, 17327-17335.	1.7	3
131	Molecular fusion of surfactant and Lewis-acid properties for attacking dirt by catalytic bond cleavage. Scientific Reports, 2021, 11, 5131.	1.6	3
132	On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties. Nanomaterials, 2021, 11, 3057.	1.9	3
133	Metal Oxide Materials from Surfactants with Metal-containing Head Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2038-2038.	0.6	2
134	Order and Defects in Ceramic Semiconductor Nanoparticle Superstructures as a Function of Polydispersity and Aspect Ratio. Particle and Particle Systems Characterization, 2017, 34, 1600215.	1.2	2
135	Sacrificial Templating: A Route to Europium-II Oxide (EuO) Particles with Arbitrary Shape Prepared Indirectly by Hostile Takeover. Crystal Growth and Design, 2019, 19, 4234-4238.	1.4	2
136	Oxygen vacancy injection-induced resistive switching in combined mobile and static gradient doped tin oxide nanorods. Nanoscale, 2020, 12, 18322-18332.	2.8	2
137	Stimuliâ€Responsive Particleâ€Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry. Angewandte Chemie, 2020, 132, 8987-8991.	1.6	2
138	Anisotropic Magnetism in Gradient Porous Carbon Composite Aerogels. Journal of Carbon Research, 2021, 7, 22.	1.4	2
139	Design of Active Defects in Semiconductors: 3D Electron Diffraction Revealed Novel Organometallic Lead Bromide Phases Containing Ferrocene as Redox Switches. Advanced Functional Materials, 0, , 2201126.	7.8	2
140	Molekulare Halbleiterâ€Tenside mit Fullerenolâ€Kopfgruppe und Farbstoffketten für die photokatalytische Umwandlung von Kohlenstoffdioxid. Angewandte Chemie, 2019, 131, 15766-15771.	1.6	1
141	Voltammetry as a Tool to Monitor the Aggregation Behavior of a Zwitterionic Ferrocene Surfactant. Langmuir, 2021, 37, 4183-4191.	1.6	1
142	"Open and Shutâ€i,für Gäte in Molybdä-Sauerstoff-Riesenkugeln, -körben und -rätern mit dem Pentagon als gemeinsamem Strukturelement. , 1999, 111, 3439.		1
143	Aerosol-Prepared Microcrystals as Amplifiers to Learn about the Facet and Point Defect-Dependent Lability and Stabilization of Hybrid Perovskite Semiconductors against Humidity and Light. Crystal Growth and Design, 0, , .	1.4	1
144	Nanocasting Strategies and Porous Materials. , 2004, , 950-958.		0

#	Article	IF	CITATIONS
145	Mesoporous Organosilica materials with complex surfaces. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2071-2071.	0.6	0
146	Chemical architectonics for complex inorganic materials. Bioinorganic Reaction Mechanisms, 2011, 7, .	0.5	0
147	Freeâ€Standing Materials: Freeâ€Standing Photonic Glasses Fabricated in a Centrifugal Field (Small) Tj ETQq1 1 (0.784314 5.2	rgBT /Overloo
148	Frontispiece: Addedâ€Value Surfactants. Chemistry - A European Journal, 2018, 24, .	1.7	0
149	FormabhÃ ¤ gige Eigenschaften und kooperative Effekte. Nachrichten Aus Der Chemie, 2018, 66, 1042-1046.	0.0	0
150	Frontispiece: Molecular Semiconductor Surfactants with Fullerenol Heads and Colored Tails for Carbon Dioxide Photoconversion. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
151	Frontispiz: Molekulare Halbleiterâ€Tenside mit Fullerenolâ€Kopfgruppe und Farbstoffketten für die photokatalytische Umwandlung von Kohlenstoffdioxid. Angewandte Chemie, 2019, 131, .	1.6	0
152	Multifunctional mesoporous organosilica nanoparticles with high surface area for antibacterial applications. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0