Shui-Jin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7971305/publications.pdf

Version: 2024-02-01

		1040056	1125743	
13	464	9	13	
papers	citations	h-index	g-index	
13	13	13	622	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Applied Catalysis B: Environmental, 2016, 196, 89-99.	20.2	299
2	Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation. Chemical Engineering Journal, 2021, 410, 128430.	12.7	35
3	Constructing TiO ₂ decorated Bi ₂ WO ₆ architectures with enhanced visible-light-driven photocatalytic activity. Semiconductor Science and Technology, 2017, 32, 065008.	2.0	23
4	One-step introduction of metallic Bi and non-metallic C in Bi2WO6 with enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2019, 30, 1310-1321.	2.2	22
5	Flower-like Bi ₂ SiO ₅ /Bi ₄ MoO ₉ heterostructures for enhanced photocatalytic degradation of ciprofloxacin. Nanotechnology, 2020, 31, 345604.	2.6	18
6	Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage. Ionics, 2022, 28, 981-988.	2.4	13
7	Dye-Sensitized-Assisted, Enhanced Photocatalytic Activity of TiO ₂ /Bi ₄ V ₂ O ₁₁ . Nano, 2018, 13, 1850028.	1.0	12
8	Bi metal/oxygen-deficient BiO _{2â^'x} with tetrahedral morphology and high photocatalytic activity. Nanotechnology, 2021, 32, 065702.	2.6	10
9	Preparation of Bi/Bi ₂ MoO ₆ Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation. Nano, 2018, 13, 1850127.	1.0	9
10	Synthesis of BiOCl/ZnMoO4 heterojunction with oxygen vacancy for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 23189-23205.	2.2	8
11	Synthesis of Bi/Bi2O2SiO3/Bi2WO6 Composites with Enhanced Visible Light Activity in Photocatalytic Degradation of Organic Compounds. Russian Journal of Physical Chemistry A, 2020, 94, 1254-1261.	0.6	6
12	Solvothermal synthesis of polyoxometalate-modified UiO-66-NH2 for enhanced removal of ciprofloxacin from aqueous solution. Journal of Materials Science: Materials in Electronics, 2022, 33, 4184-4196.	2.2	6
13	Solvothermal Synthesis of Polyoxometalate Modified Metal-Organic Framework for Enhanced Removal of Methylene Blue from Aqueous Solution. Russian Journal of Physical Chemistry A, 2022, 96, S44-S50.	0.6	3