Masoud Emamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7970390/publications.pdf Version: 2024-02-01

Μλέομο Εμλμγ

#	Article	IF	CITATIONS
1	Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Composites Science and Technology, 2006, 66, 1063-1066.	3.8	136
2	Investigation of microstructure, hardness and wear properties of Al–4.5wt.% Cu–TiC nanocomposites produced by mechanical milling. Materials & Design, 2011, 32, 3718-3729.	5.1	135
3	Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. Materials & Design, 2013, 49, 347-359.	5.1	126
4	The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 250-257.	2.6	120
5	Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10%B4C cast composites. Materials & Design, 2010, 31, 4414-4422.	5.1	106
6	Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 39-46.	2.6	96
7	Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138929.	2.6	84
8	The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4337-4342.	2.6	83
9	Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Materials & Design, 2011, 32, 2157-2164.	5.1	80
10	Effect of Mn and Sr on intermetallics in Fe-rich eutectic Al-Si alloy. International Journal of Cast Metals Research, 2002, 15, 17-24.	0.5	74
11	The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Materials & Design, 2010, 31, 2187-2195.	5.1	74
12	The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15% Mg2Si composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2998-3004.	2.6	73
13	Enhanced Ductility of a Fineâ€Grained Mg–Gd–Al–Zn Magnesium Alloy by Hot Extrusion. Advanced Engineering Materials, 2018, 20, 1701171.	1.6	70
14	The effect of solution temperature on the microstructure and tensile properties of Al–15%Mg2Si composite. Materials & Design, 2011, 32, 2701-2709.	5.1	69
15	The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite. Journal of Alloys and Compounds, 2011, 509, 9026-9033.	2.8	67
16	Preparation of the Ni–P composite coating co-deposited by nano TiC particles and evaluation of it's corrosion property. Applied Surface Science, 2012, 258, 2597-2601.	3.1	67
17	Mechanical properties of a hot deformed Al-Mg2Si in-situ composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 10-17.	2.6	65
18	Effect of Mn addition on the microstructure and tensile properties of Al–15%Mg2Si composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 191-198.	2.6	63

#	Article	IF	CITATIONS
19	The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5318-5325.	2.6	62
20	Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy. Vacuum, 2019, 167, 214-222.	1.6	62
21	Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139817.	2.6	60
22	Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. Journal of Materials Research, 2017, 32, 4186-4195.	1.2	59
23	Preparation of electroless Ni–P composite coatings containing nano-scattered alumina in presence of polymeric surfactant. Progress in Natural Science: Materials International, 2012, 22, 318-325.	1.8	57
24	The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys. Journal of Materials Engineering and Performance, 2018, 27, 1327-1333.	1.2	57
25	Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Progress in Natural Science: Materials International, 2017, 27, 228-235.	1.8	56
26	Precipitation of Fe rich intermetallics in Cr- and Co-modified A413 alloy. International Journal of Cast Metals Research, 2005, 18, 73-79.	0.5	55
27	The Effect of Fe-Rich Intermetallics on the Weibull Distribution of Tensile Properties in a Cast Al-5 Pct Si-3 Pct Cu-1 Pct Fe-0.3 Pct Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 659-670.	1.1	53
28	The microstructure, hardness and tensile properties of Al–15%Mg2Si in situ composite with yttrium addition. Materials & Design, 2011, 32, 4559-4566.	5.1	53
29	The effect of Zr on the microstructure and tensile properties of hot-extruded Al–Mg2Si composite. Materials & Design, 2012, 36, 323-330.	5.1	53
30	Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140667.	2.6	51
31	The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 431, 263-276.	2.6	50
32	Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy. Materials and Design, 2016, 94, 111-120.	3.3	50
33	The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Materials & Design, 2010, 31, 4450-4456.	5.1	49
34	Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy. Journal of Alloys and Compounds, 2020, 815, 152380.	2.8	49
35	Effects of Al–5Ti–1B and Al–5Zr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy. Materials & Design, 2010, 31, 200-209.	5.1	46
36	Selection of an optimal refinement condition to achieve maximum tensile properties of Al–15%Mg2Si composite based on TOPSIS method. Materials & Design, 2013, 46, 442-450.	5.1	46

#	Article	IF	CITATIONS
37	Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment. Journal of Materials Engineering and Performance, 2014, 23, 1146-1156.	1.2	46
38	An investigation on semi-solid Al–7Si–0.3Mg alloy produced by mechanical stirring. Journal of Materials Processing Technology, 2005, 169, 382-387.	3.1	45
39	Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 409-414.	2.6	45
40	Corrosion behavior of Ni–P/nano-TiC composite coating prepared in electroless baths containing different types of surfactant. Progress in Natural Science: Materials International, 2012, 22, 480-487.	1.8	43
41	The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 36-44.	2.6	42
42	Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg‑Al2Ca‑Mg2Ca in-situ composite by hot extrusion. Materials Characterization, 2019, 147, 155-164.	1.9	41
43	Modification of Cast Al-Mg2Si Metal Matrix Composite by Li. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 822-832.	1.0	40
44	Microstructure and tensile properties of cast Al–15%Mg2Si composite: Effects of phosphorous addition and heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 446-453.	2.6	40
45	The effect of strontium on the microstructure, porosity and tensile properties of A356–10%B4C cast composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 170-179.	2.6	39
46	The effect of mischmetal and heat treatment on the microstructure and tensile properties of A357 Al–Si casting alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 573-581.	2.6	39
47	The influence of Ni addition and hot-extrusion on the microstructure and tensile properties of Al–15%Mg2Si composite. Materials & Design, 2013, 46, 381-390.	5.1	39
48	In- vitro corrosion behavior of the cast and extruded biodegradable Mg-Zn-Cu alloys in simulated body fluid (SBF). Journal of Magnesium and Alloys, 2021, 9, 2078-2096.	5.5	38
49	The influence of Li on the tensile properties of extruded in situ Al–15%Mg2Si composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 346-353.	2.6	36
50	Mechanical and high temperature wear properties of extruded Al composite reinforced with Al 13 Fe 4 CMA nanoparticles. Materials and Design, 2016, 90, 532-544.	3.3	36
51	Effect of grain refinement on mechanical properties and sliding wear resistance of extruded Sc-free 7042 aluminum alloy. Materials & Design, 2014, 54, 361-367.	5.1	35
52	Effects of pre-deformation and heat treatment conditions in the SIMA process on properties of an Al–Zn–Mg–Cu alloy modified by Al–8B grain refiner. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4482-4490.	2.6	34
53	Microstructural and mechanical characterization of Al–15%Mg2Si composite containing chromium. Materials & Design, 2011, 32, 4262-4269.	5.1	34
54	Microstructural evolution and tensile properties of the in situ Al–15%Mg2Si composite with extra Si contents. Materials & Design, 2012, 37, 215-222.	5.1	33

#	Article	IF	CITATIONS
55	Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite. Materials Characterization, 2018, 135, 57-70.	1.9	33
56	The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% SiC composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3733-3740.	2.6	32
57	Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 190-196.	2.6	32
58	Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process. Materials & Design, 2013, 46, 766-775.	5.1	32
59	A novel aluminum based nanocomposite with high strength and good ductility. Journal of Alloys and Compounds, 2015, 649, 461-473.	2.8	32
60	Mechanical and wear properties of Al-Al3Mg2 nanocomposites prepared by mechanical milling and hot pressing. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 290-297.	2.4	31
61	The influence of beryllium addition on the microstructure and mechanical properties of Al–15%Mg2Si in-situ metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8205-8211.	2.6	30
62	High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel. RSC Advances, 2016, 6, 5977-5987.	1.7	28
63	Enhanced mechanical properties of as-cast Mg-Al-Ca magnesium alloys by friction stir processing. Materials Letters, 2021, 296, 129880.	1.3	28
64	Microstructure and Tensile Properties of Al-15wt%Mg ₂ Si Composite after Hot Extrusion and Heat Treatment. Key Engineering Materials, 0, 471-472, 1171-1176.	0.4	27
65	A new intermetallic phase formation in Mg Si Ni magnesium-based in-situ formed alloys. Vacuum, 2019, 164, 349-354.	1.6	27
66	The effect of Al–5Ti–1B on the microstructure, hardness and tensile properties of Al2O3 and SiC-containing metal–matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 210-217.	2.6	26
67	The effects of boron additions on the microstructure, hardness and tensile properties of in situ Al–15%Mg2Si composite. Materials & Design, 2011, 32, 5049-5054.	5.1	26
68	The effect of Fe-rich intermetallics on the microstructure, hardness and tensile properties of Al–Mg2Si die-cast composite. Materials & Design, 2013, 46, 881-888.	5.1	26
69	The influence of Cu–15P master alloy on the microstructure and tensile properties of Al–25wt% Mg2Si composite before and after hot-extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 566, 1-7.	2.6	26
70	The Effect of Copper Addition on the Fluidity and Viscosity of an Al-Mg-Si Alloy. Journal of Materials Engineering and Performance, 2014, 23, 469-476.	1.2	26
71	Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy. Journal of Materials Engineering and Performance, 2017, 26, 2136-2150.	1.2	26
72	Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg–Mg2Si composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141574.	2.6	26

#	Article	IF	CITATIONS
73	Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites. Journal of Composite Materials, 2014, 48, 3331-3346.	1.2	25
74	Effect of Si and Ni on microstructure and mechanical properties of in-situ magnesium-based composites in the as-cast and extruded conditions. Materials Chemistry and Physics, 2019, 232, 305-310.	2.0	25
75	Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 wt% Mg2Si Composite. Journal of Tribology, 2019, 141, .	1.0	25
76	Effects of Al–5Ti–1B on the structure and hardness of a super high strength aluminum alloy produced by strain-induced melt activation process. Materials & Design, 2011, 32, 4485-4492.	5.1	24
77	Constitutive modeling of flow stress during hot deformation of Sn–Al–Zn–Cu–Mg multi-principal-element alloy. Vacuum, 2019, 170, 108970.	1.6	24
78	On the conjoint influence of heat treatment and lithium content on microstructure and mechanical properties of A380 aluminum alloy. Materials & Design, 2014, 59, 377-382.	5.1	23
79	Microstructures and tensile properties of Al/2024–Al 4 Sr composite after hot extrusion and T6 heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 303-310.	2.6	23
80	Effects of extrusion temperature on the microstructure and tensile properties of Al–16 wt% Al4Sr metal matrix composite. Materials & Design, 2013, 46, 598-604.	5.1	22
81	Thermal analysis study on the grain refinement of Al–15Zn–2.5Mg–2.5Cu alloy. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1941-1952.	2.0	22
82	The effect of Al–5Ti–1B grain refiner on the structure and tensile properties of Al–20%Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 148-153.	2.6	21
83	Exploiting superior tensile properties of a novel network-structure AlA206 matrix composite by hybridizing micron-sized Al 3 Ti with Al 2 O 3 nano particulates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 190-198.	2.6	21
84	The effect of Alâ^'5Tiâ^'1B on the microstructure, hardness and tensile properties of a new Zn rich aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 421-429.	2.6	21
85	Effects of pre-deformation on microstructure and tensile properties of Al—Zn—Mg—Cu alloy produced by modified strain induced melt activation. Transactions of Nonferrous Metals Society of China, 2016, 26, 2283-2295.	1.7	20
86	Sr effect on the microstructure and tensile properties of A357 aluminum alloy and Al2O3/SiC-A357 cast composites. Materials Characterization, 2009, 60, 1361-1369.	1.9	19
87	The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy. Materials & Design, 2012, 38, 64-73.	5.1	19
88	Investigation of the effect of Al-8B master alloy and strain-induced melt activation process on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy. Materials & Design, 2014, 53, 308-316.	5.1	18
89	Mechanical properties of Mg-Al-Mn magnesium alloys with low Al content in the as-cast and extruded conditions. Materials Research Express, 2019, 6, 106521.	0.8	18
90	Effect of grain refinement on the microstructure and tensile properties of thin 319 Al castings. Materials & Design, 2011, 32, 1542-1547.	5.1	17

#	Article	IF	CITATIONS
91	Evaluating the room temperature mechanical properties of age hardened AZ80 magnesium alloy using shear punch testing method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 360-369.	2.6	17
92	Microstructure Evolution and Mechanical Properties of the AZ91 Magnesium Alloy with Sr and Ti Additions in the As-Cast and As-Aged Conditions. Journal of Materials Engineering and Performance, 2019, 28, 6853-6863.	1.2	17
93	Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy. International Journal of Advanced Manufacturing Technology, 2019, 104, 4265-4275.	1.5	16
94	Improvement of mechanical properties of in situ Mg-Si composites via Cu addition and hot working. Journal of Alloys and Compounds, 2022, 905, 164176.	2.8	16
95	Fluidity of Al based metal matrix composites containing Al ₂ O ₃ and SiC particles. International Journal of Cast Metals Research, 2009, 22, 430-437.	0.5	15
96	The Effect of La-intermetallic Compounds on Tensile Properties of Al-15%Mg2Si In-situ Composite. , 2015, 11, 55-60.		15
97	The effect of strain-induced melt activation process on the microstructure and mechanical properties of Ti-refined A6070 Al alloy. Materials & Design, 2013, 46, 824-831.	5.1	14
98	The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 161-167.	2.6	14
99	Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1457-1469.	2.0	14
100	Grain refinement and enhanced mechanical properties of ZK20 magnesium alloy via hot extrusion and mischmetal addition. Materials Research Express, 2019, 6, 116522.	0.8	14
101	The Microstructure, and Mechanical and Corrosion Properties of As-Cast and As-Extruded Mg-2%Zn-x%Cu Alloys After Solution and Aging Heat Treatments. Journal of Materials Engineering and Performance, 2019, 28, 2305-2315.	1.2	14
102	The statistical analysis of tensile and compression properties of the as-cast AZ91-X%B4C composites. International Journal of Metalcasting, 2020, 14, 505-517.	1.5	14
103	Mechanical Behavior of As-Cast and Extruded Mg-Si-Ni-Ca Magnesium Alloys. Journal of Materials Engineering and Performance, 2020, 29, 7728-7735.	1.2	14
104	Microstructure and Tensile Properties of Mg–5Zn Alloy Containing Ca. Metals and Materials International, 2021, 27, 1565-1577.	1.8	14
105	Effects of Zr, Ti and B on structure and tensile properties of Al–10Mg alloy (A520). International Journal of Cast Metals Research, 2004, 17, 17-22.	0.5	13
106	Ca Addition Effects on the Microstructure, Tensile and Corrosion Properties of Mg Matrix Alloy Containing 8Âwt.% Mg2Si. Journal of Materials Engineering and Performance, 2018, 27, 411-422.	1.2	13
107	Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy. Journal of Materials Engineering and Performance, 2020, 29, 2991-3003.	1.2	13
108	Effect of Hot Extrusion on Microstructure and Tensile Properties of Ca Modified Mg-Mg2Si		12

Composite. , 2015, 11, 38-43.

#	Article	IF	CITATIONS
109	Wear Behavior of Al/CMA-Type Al ₃ Mg ₂ Nanocomposites Fabricated by Mechanical Milling and Hot Extrusion. Tribology Transactions, 2016, 59, 219-228.	1.1	12
110	Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	12
111	Surface treatment and nickel plating of iron powder metallurgy parts for corrosion protection. Materials & Design, 2009, 30, 3560-3565.	5.1	11
112	Effects of Al—5Ti—1B master alloy on the microstructural evaluation of a highly alloyed aluminum alloy produced by SIMA process. AIP Conference Proceedings, 2010, , .	0.3	11
113	Effects of Zr and B on the structure and tensile properties of Al–20%Mg alloy. Materials & Design, 2014, 56, 557-564.	5.1	11
114	Investigation the Effect of Al-5Ti-1B Grain Refiner and T6 Heat Treatment on Tensile Properties of Al-8%Mg. , 2015, 11, 32-37.		11
115	Evaluating the Effect of Hotâ€Rolling Reduction on the Mechanical Properties of In Situ Formed Aluminum–Magnesium–Silicon (Alâ€Mg ₂ Si) Composites. Advanced Engineering Materials, 2019, 21, 1900609.	1.6	11
116	Influence of Hot Extrusion on the Microstructure, Tensile and Wear Properties of Mg–5Sb–xSiC Hybrid Composites. Metals and Materials International, 2022, 28, 679-694.	1.8	11
117	Synergistic Effects of Cerium-Based Rare Earth Addition and Hot Deformation on the Microstructure and Mechanical Properties of Mg-0.5Zn-0.5Zr Magnesium Alloy. Metals and Materials International, 2022, 28, 1105-1113.	1.8	11
118	Tailoring the mechanical properties of hypereutectic in situ Al–Mg2Si composites via hybrid TiB2 reinforcement and hot extrusion. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	1.9	11
119	Improvement in Tensile and Wear Properties of As-Cast Al–15%Mg2Si Composite Modified by Zn and Ni. International Journal of Metalcasting, 2017, 11, 790-801.	1.5	10
120	Elucidating the Effect of TiB2 Volume Percentage on the Mechanical Properties and Corrosion Behavior of Al5083-TiB2 Composites. Journal of Materials Engineering and Performance, 2019, 28, 6912-6920.	1.2	10
121	Effect of Isothermal Reheating at Different Holding Times on The Microstructure of Al-Mg[sub 2]Si In-situ Cast Composite. , 2010, , .		9
122	Study on fracture behaviour of Al–15%Mg2Si metal matrix composite with and without beryllium additions. Journal of Materials Science, 2011, 46, 6856-6862.	1.7	9
123	Hardness and Wear Properties of Al–4.5%Cu/Al ₃ Mg ₂ Nanocomposite Prepared by Mechanical Alloying. Materials Transactions, 2012, 53, 1310-1317.	0.4	9
124	Microstructures and Tensile Properties of Hot-Extruded Al Matrix Composites Containing Different Amounts of Al4Sr. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5344-5350.	1.1	9
125	The Effect of Si and Extrusion Process on the Microstructure and Tensile Properties of Mg-Mg2Si Composite. , 2015, 11, 79-83.		9
126	Effects of Be additions on microstructure, hardness and tensile properties of A380 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 3539-3545.	1.7	9

#	Article	IF	CITATIONS
127	Microstructure and Interface Studies of Al/SiC _p Composites Produced by Dynamic Compaction. Materials Science Forum, 2004, 465-466, 213-218.	0.3	8
128	Structural characterization of AA 2024-MoSi2 nanocomposite powders produced by mechanical milling. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 298-306.	2.4	8
129	The Influence of Anode Composition on Energy Consumption and Current Efficiency in Zinc Electrowinning. Journal of the Electrochemical Society, 2017, 164, E166-E172.	1.3	8
130	The influence of heat treatment on the structure and tensile properties of thin-section A356 aluminum alloy casts refined by Ti, B and Zr. Journal of Materials Research, 2017, 32, 3540-3547.	1.2	8
131	Mechanical properties of as-cast and wrought Mg–5Ni-xAl magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142996.	2.6	8
132	Enhanced mechanical properties of as-cast rare earth bearing magnesium alloy via elevated-temperature homogenization. Materials Today Communications, 2022, 31, 103821.	0.9	8
133	Influence of sintering on bending strength of underwater shock consolidated Al–SiCpcomposites. Materials Science and Technology, 2006, 22, 349-352.	0.8	7
134	Statistical analysis of tensile properties of cast A357/Al ₂ O ₃ MMCs. Materials Science and Technology, 2010, 26, 149-156.	0.8	7
135	The Effect of Sr and Grain Refining Elements on the Microstructure and Tensile Properties of A356-10%B4C Metal Matrix Composite. Mechanics of Advanced Materials and Structures, 2011, 18, 210-217.	1.5	7
136	The effect of Bi addition on the microstructure and tensile properties of cast Alâ€15%Mg ₂ Si composite. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 431-435.	0.5	7
137	Effects of Zn addition on the microstructure and tensile properties of hot-extruded Al–16wt% Al4Sr in-situ composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 92-100.	2.6	7
138	The Microstructure and Tensile Properties of a Newly Developed Mg–Al/Mg3Sb2 In Situ Composite in As-Cast and Extruded Conditions. Metals and Materials International, 2018, 24, 1099-1111.	1.8	7
139	Effects of Ca/Al ratio and extrusion process on Mg–Al–Ca alloys to produce a high toughness in-situ composite. Philosophical Magazine, 2018, 98, 2826-2844.	0.7	7
140	Effect of Isothermal Holding on Semisolid Microstructure of Al–Mg ₂ Si Composites. ISRN Metallurgy, 2012, 2012, 1-7.	0.7	7
141	Effects of Mg ₂ Sn intermetallic on the microstructure and tensile properties of Al–15% Mg ₂ Si–X% Sn composite. Journal of Materials Research, 2016, 31, 3891-3899.	1.2	6
142	The Effect of Ca Content on the Microstructure, Hardness and Tensile Properties of AZ81 Mg Cast Alloy. Journal of Materials Engineering and Performance, 2017, 26, 2151-2161.	1.2	6
143	The microstructure, mechanical and wear properties of AZ91-x%B ₄ C metal matrix composites in as-cast and extruded conditions. Materials Research Express, 2019, 6, 126522.	0.8	6
144	Synergistic effects of alloying, homogenization, and hot extrusion on the mechanical properties of as-cast Mg–Al–Ca magnesium alloys. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	6

#	Article	IF	CITATIONS
145	Microstructure, mechanical properties and wear behaviour of the AZ91–Mg ₂ Si–SiC hybrid composites. Materials Science and Technology, 2021, 37, 1333-1341.	0.8	6
146	The Evolution of Heat Treatment on the Tensile Properties of Na-Modified Al-Mg ₂ Si <i>In Situ</i> Composite. Advanced Materials Research, 2011, 311-313, 283-286.	0.3	5
147	Effects of Morphological Characteristics of Alumina Particles and Interfacial Bonding Strength on Wear Behavior of Nano/Micro-alumina Particulates Reinforced Al/A206 Matrix Composites. Tribology Letters, 2013, 51, 499-511.	1.2	5
148	The Study of Microstructures and Tensile Properties of an <i>In Situ</i> A356-ZrB ₂ Metal Matrix Composite. Key Engineering Materials, 0, 553, 29-33.	0.4	5
149	The microstructural revolution of Al-10%Al ₃ Mg ₂ nanocomposite during mechanical milling. Advances in Materials and Processing Technologies, 2016, 2, 152-164.	0.8	5
150	The effects of Cu addition and solutionising heat treatment on the microstructure and wear properties of hot-extruded Al–Mg ₂ Si eutectic alloy. Advances in Materials and Processing Technologies, 2017, 3, 164-173.	0.8	5
151	Microstructures and mechanical performance of Mg–4Si–6Ni– <i>x</i> Y <i>in situ</i> composite after extrusion process. Materials Science and Technology, 2022, 38, 169-180.	0.8	5
152	Tailoring the tensile properties of AZ91 magnesium alloy via grain refinement. Materials Science and Technology, 2022, 38, 1434-1438.	0.8	5
153	Effects of the SIMA Process on the Microstructure of 6061 Al Alloy Refined by Al-5Ti-1B. Key Engineering Materials, 2013, 553, 87-92.	0.4	4
154	Effect of MoSi ₂ distribution on room and high temperature mechanical properties of aluminum matrix nanocomposites. Journal of Materials Research, 2016, 31, 1741-1747.	1.2	4
155	Effects of Al3Ni and Al7Cr Intermetallics and T6 Heat Treatment on the Microstructure and Tensile Properties of Al-Zn-Mg-Cu Alloy. Journal of Materials Engineering and Performance, 2020, 29, 3432-3442.	1.2	4
156	Enhanced mechanical properties of Mg–Ni– <i>x</i> RE alloys via hot extrusion. Materials Science and Technology, 2021, 37, 1285-1290.	0.8	4
157	Comparative Study of Al/SiC _p Composites Manufactured by Direct and Underwater Explosive Compaction. Materials Science Forum, 2004, 465-466, 433-438.	0.3	3
158	Investigation of Wear Properties of Al-4.5wt.%Cu Nano-Composite Reinforced with Different Weight Percent of TiC Nano Particles Produced by Mechanical Alloying. Advanced Materials Research, 0, 545, 124-128.	0.3	3
159	The Influences of Interfacial Characteristics and Subsurface Microstructural Evolution on Wear Behavior of Al/A206-5ÂPct Alumina Micro/Nano-Composites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1115-1124.	1.0	3
160	Evaluating Microstructure and High-Temperature Shear Behavior of Hot Extruded Al-Al ₁₃ Fe ₄ Nanocomposite. Materials Transactions, 2016, 57, 1236-1245.	0.4	3
161	The effects of Zr and Ti on the microstructure and tensile properties of Al–Cu–Mg aluminium alloy. Canadian Metallurgical Quarterly, 2018, 57, 470-480.	0.4	3
162	Elucidating the Effects of Cu and Hot-Extrusion on Tensile Properties of Al–AlSb In Situ Composite. Metals and Materials International, 2020, 27, 2682.	1.8	3

#	Article	IF	CITATIONS
163	Effects of Zr additions on structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti (wt.%) alloy. China Foundry, 2022, 19, 9.	0.5	3
164	Interfacial characterisation in Al–20 vol%SiC _p explosively compacted composite. Materials Science and Technology, 2009, 25, 108-110.	0.8	2
165	The Influence of Yttrium Rich Intermetallic Phases and Heat Treatment on the Microstructure, Hardness and Wear Properties of Al-15%Mg ₂ Si Composite. Key Engineering Materials, 0, 471-472, 1165-1170.	0.4	2
166	Effects of Strontium and Calcium on the Microstructure and Grain Size of Cast AZ91 Magnesium Alloy. Advanced Materials Research, 0, 264-265, 789-794.	0.3	2
167	The Effect of Simultaneous Addition of Ca and Sr on the Microstructure and Tensile Properties of A357-20% Al ₂ O ₃ Composite. Mechanics of Advanced Materials and Structures, 2011, 18, 201-209.	1.5	2
168	The Influence of Li on the Tensile Properties of Al-Mg ₂ Si Metal Matrix Composite. Key Engineering Materials, 0, 471-472, 1052-1057.	0.4	2
169	STRUCTURAL AND MORPHOLOGICAL EVALUATION OF NANO-SIZED MoSi ₂ POWDER PRODUCED BY MECHANICAL MILLING. International Journal of Modern Physics Conference Series, 2012, 05, 464-471.	0.7	2
170	Effect of Titanium on Microstructure of Al2014 Alloy Prepared by SIMA Process. Key Engineering Materials, 0, 553, 93-98.	0.4	2
171	Nanocomposites of aluminum alloy-MoSi ₂ : Synthesis and characterization. Journal of Composite Materials, 2015, 49, 3145-3155.	1.2	2
172	Effects of Grain Refiners and Cooling Rates on the Microstructure and Tensile Properties of A357Alloy. Metallography, Microstructure, and Analysis, 0, , 1.	0.5	2
173	Effect of Calcium Addition and Heat Treatment on the Al-Zn-In Alloys as Sacrificial Anode. Materials Science Forum, 2007, 546-549, 761-766.	0.3	1
174	Influence of Hot Extrusion Process on the Mechanical Behavior of AA6061/SIC Composites. Advanced Materials Research, 0, 264-265, 141-148.	0.3	1
175	Comparative Study of Al/TiB ₂ Composites Manufactured by Underwater and Direct Shock Wave Consolidation. Materials Science Forum, 2011, 673, 231-236.	0.3	1
176	Synthesis and Mechanical Properties of a Novel Al/Î'-Al ₃ Mg ₂ Nanocomposite Prepared by Mechanical Alloying Process. Advanced Materials Research, 0, 445, 827-832.	0.3	1
177	Microstructural evaluation and tensile properties of Cd-added Al-15Mg ₂ Si-3Cu composite. Advances in Materials and Processing Technologies, 2016, 2, 73-82.	0.8	1
178	Effect of Pr on the grain refinement and mechanical properties of AM50 alloy in as-cast condition. AIP Conference Proceedings, 2018, , .	0.3	1
179	Microstructure, tensile and bending behaviour of the as-cast AM50 alloy modified with different antimony and copper additions. Materials Science and Technology, 2021, 37, 86-102.	0.8	1
180	Wear Behavior of Al-Mg[sub 2]Si Cast In-situ Composite: Effect of Mg[sub 2]Si Different Volume Fractions. , 2010		0

Fractions. , 2010, , .

#	Article	IF	CITATIONS
181	The Effect of Li Additions on Wear Properties of Al-Mg[sub 2]Si Cast In-situ Composites. , 2010, , .		0
182	Effects of Boron on Microstructure and Tensile Properties of Al-Mg[sub 2]Si Metal Matrix Composite. , 2010, , .		0
183	The Effects of Isothermal Temperature on the Microstructure of Semisolid A6070 Alloy Produced by SIMA Process. Advanced Materials Research, 0, 264-265, 415-420.	0.3	0
184	The Effect of Lithium on the Microstructure and Morphology of Fe-Rich Intermetallic Compounds in 360 Cast Alloy. Advanced Materials Research, 0, 264-265, 1782-1787.	0.3	0
185	Effects of Titanium Combined with Aluminium on the Electrochemical Properties and Efficiency of Mg-Mn Anodes. Advanced Materials Research, 2011, 264-265, 783-788.	0.3	0
186	Effect of Al-15Zr Master Alloy and Extrusion Process on Microstructure and Mechanical Properties of Al-6%Mg Alloy. , 2015, 11, 438-443.		0