Danielle L Kirkman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969967/publications.pdf

Version: 2024-02-01

567281 1,025 39 15 citations h-index papers

30 g-index 39 39 39 1602 docs citations times ranked citing authors all docs

454955

#	Article	IF	Citations
1	Interplay Between Dyslipidemia, Atherogenic Lipoproteins,Âand Residual Atherogenic Risk in Liver Transplant Recipients. Clinical Gastroenterology and Hepatology, 2023, 21, 1660-1662.e1.	4.4	2
2	Resistance exercise for cardiac rehabilitation. Progress in Cardiovascular Diseases, 2022, 70, 66-72.	3.1	14
3	Differential fuel utilization in liver transplant recipients and its relationship with nonâ€alcoholic fatty liver disease. Liver International, 2022, 42, 1401-1409.	3.9	8
4	Midpoint of energy intake, non-fasting time and cardiorespiratory fitness in heart failure with preserved ejection fraction and obesity. International Journal of Cardiology, 2022, 355, 23-27.	1.7	4
5	Extended Non-Fasting Period And Delayed Last Meal Are Associated With Peak Oxygen Consumption In Heart Failure With Preserved Ejection Fraction. Journal of Cardiac Failure, 2022, 28, S104.	1.7	O
6	Cardiorespiratory Fitness In Patients With Heart Failure With Preserved Ejection Fraction And Obstructive Sleep Apnea. Journal of Cardiac Failure, 2022, 28, S78.	1.7	0
7	Sex Differences in Vascular Endothelial Function After Liver Transplant. FASEB Journal, 2022, 36, .	0.5	O
8	Differences in Immune Cell Mitochondrial Function in Black and White Patients with Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2022, 36, .	0.5	0
9	Weight Gain, Fibroblast Growth Factorâ€23, and Vascular Function in Liver Transplant Recipients. FASEB Journal, 2022, 36, .	0.5	O
10	The effect of dietary nitrate on exercise capacity in chronic kidney disease: a randomized controlled pilot study. Nitric Oxide - Biology and Chemistry, 2021, 106, 17-23.	2.7	5
11	The Chronic Kidney Disease Phenotype of HFpEF: Unique Cardiac Characteristics. American Journal of Cardiology, 2021, 142, 143-145.	1.6	5
12	Exercise intolerance in kidney diseases: physiological contributors and therapeutic strategies. American Journal of Physiology - Renal Physiology, 2021, 320, F161-F173.	2.7	32
13	Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2080-H2100.	3.2	52
14	Time of eating and cardiorespiratory fitness in patients with heart failure with preserved ejection fraction and obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2471-2473.	2.6	4
15	Cardiopulmonary exercise testing during the COVID-19 pandemic. Progress in Cardiovascular Diseases, 2021, 67, 35-39.	3.1	15
16	A randomized trial of aerobic exercise in chronic kidney disease: Evidence for blunted cardiopulmonary adaptations. Annals of Physical and Rehabilitation Medicine, 2021, 64, 101469.	2.3	9
17	Rethinking Rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention, 2021, 41, 389-399.	2.1	8
18	Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Current Problems in Cardiology, 2020, 45, 100417.	2.4	93

#	Article	IF	CITATIONS
19	Office-Based Weight Loss Counseling Is Ineffective in Liver Transplant Recipients. Digestive Diseases and Sciences, 2020, 65, 639-646.	2.3	9
20	Muscular Strength and Cardiovascular Disease. Journal of Cardiopulmonary Rehabilitation and Prevention, 2020, 40, 302-309.	2.1	80
21	Sarcopenic Obesity in Heart Failure With Preserved Ejection Fraction. Frontiers in Endocrinology, 2020, 11, 558271.	3.5	18
22	The Impact of Coronary Artery Disease and Statins on Survival After Liver Transplantation. Liver Transplantation, 2019, 25, 1514-1523.	2.4	46
23	Potential role for interleukinâ€1 in the cardioâ€renal syndrome. European Journal of Heart Failure, 2019, 21, 385-386.	7.1	9
24	Exercise Intolerance in Patients With Heart Failure. Journal of the American College of Cardiology, 2019, 73, 2209-2225.	2.8	236
25	Altered vascular function in chronic kidney disease: evidence from passive leg movement. Physiological Reports, 2019, 7, e14075.	1.7	15
26	Effects of aerobic exercise on vascular function in nondialysis chronic kidney disease: a randomized controlled trial. American Journal of Physiology - Renal Physiology, 2019, 316, F898-F905.	2.7	42
27	The effects of intradialytic exercise on hemodialysis adequacy: A systematic review. Seminars in Dialysis, 2019, 32, 368-378.	1.3	25
28	Cardiopulmonary exercise testing reveals subclinical abnormalities in chronic kidney disease. European Journal of Preventive Cardiology, 2018, 25, 1717-1724.	1.8	34
29	Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 314, F423-F429.	2.7	47
30	Altered Vascular Function in Chronic Kidney Disease. Medicine and Science in Sports and Exercise, 2018, 50, 145.	0.4	0
31	The Vascular Endothelium in Chronic Kidney Disease. Exercise and Sport Sciences Reviews, 2016, 44, 12-19.	3.0	40
32	Cardiopulmonary Exercise Testing Reveals Abnormalities in Chronic Kidney Disease. Medicine and Science in Sports and Exercise, 2016, 48, 714.	0.4	2
33	The Importance of Exercise for Chronic Kidney Disease Patients. , 2014, 24, e51-e53.		6
34	Anabolic exercise in haemodialysis patients: a randomised controlled pilot study. Journal of Cachexia, Sarcopenia and Muscle, 2014, 5, 199-207.	7.3	88
35	Exercise as an Adjunct Therapy In Chronic Kidney Disease. Renal Nutrition Forum, 2014, 33, 1-8.	0.0	11
36	Interaction between Intradialytic Exercise and Hemodialysis Adequacy. American Journal of Nephrology, 2013, 38, 475-482.	3.1	30

#	Article	IF	CITATIONS
37	Arteriovenous fistula complication following MRI. BMJ Case Reports, 2012, 2012, bcr0320126103-bcr0320126103.	0.5	1
38	The Effects of Intradialytic Resistance Training in Chronic Kidney Disease Patients: A Randomised Controlled Trial. Medicine and Science in Sports and Exercise, 2011, 43, 757.	0.4	0
39	Kidney Transplantation: A Systematic Review of Interventional and Observational Studies of Physical Activity on Intermediate Outcomes. Advances in Chronic Kidney Disease, 2009, 16, 482-500.	1.4	35