
jean-christophe Paillart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4945-4949.	7.1	415
2	Dimerization of retroviral RNA genomes: an inseparable pair. Nature Reviews Microbiology, 2004, 2, 461-472.	28.6	257
3	A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5572-5577.	7.1	253
4	A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. Journal of Virology, 1996, 70, 8348-8354.	3.4	190
5	A supramolecular assembly formed by influenza A virus genomic RNA segments. Nucleic Acids Research, 2012, 40, 2197-2209.	14.5	149
6	Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. Journal of Molecular Biology, 1997, 270, 36-49.	4.2	141
7	Opposing Effects of Human Immunodeficiency Virus Type 1 Matrix Mutations Support a Myristyl Switch Model of Gag Membrane Targeting. Journal of Virology, 1999, 73, 2604-2612.	3.4	136
8	Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Research, 1994, 22, 145-151.	14.5	133
9	Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie, 1996, 78, 639-653.	2.6	131
10	First Snapshots of the HIV-1 RNA Structure in Infected Cells and in Virions. Journal of Biological Chemistry, 2004, 279, 48397-48403.	3.4	127
11	HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Research, 2010, 38, 633-646.	14.5	118
12	Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nature Communications, 2014, 5, 4304.	12.8	103
13	Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Research, 2006, 34, 2328-2339.	14.5	94
14	In Vitro Evidence for a Long Range Pseudoknot in the 5′-Untranslated and Matrix Coding Regions of HIV-1 Genomic RNA. Journal of Biological Chemistry, 2002, 277, 5995-6004.	3.4	90
15	CTIP2 is a negative regulator of P-TEFb. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12655-12660.	7.1	86
16	HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Research, 2007, 35, 2695-2704.	14.5	85
17	Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. Rna, 1999, 5, 1222-1234.	3.5	83
18	The Life-Cycle of the HIV-1 Gag–RNA Complex. Viruses, 2016, 8, 248.	3.3	80

#	Article	IF	CITATIONS
19	Interaction network linking the human H3N2 influenza A virus genomic RNA segments. Vaccine, 2012, 30, 7359-7367.	3.8	74
20	Retroviral RNA Dimerization: From Structure to Functions. Frontiers in Microbiology, 2018, 9, 527.	3.5	67
21	Structural and Functional Motifs in Influenza Virus RNAs. Frontiers in Microbiology, 2018, 9, 559.	3.5	65
22	Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nature Methods, 2015, 12, 866-872.	19.0	63
23	Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors. Microbiology and Molecular Biology Reviews, 2009, 73, 211-232.	6.6	61
24	HIV-1 RNA Dimerization Initiation Site Is Structurally Similar to the Ribosomal A Site and Binds Aminoglycoside Antibiotics. Journal of Biological Chemistry, 2003, 278, 2723-2730.	3.4	58
25	Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription. Nucleic Acids Research, 2007, 35, 5141-5153.	14.5	56
26	HIV-1 Pr55 ^{Gag} binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biology, 2017, 14, 90-103.	3.1	55
27	Hijacking of the Ubiquitin/Proteasome Pathway by the HIV Auxiliary Proteins. Viruses, 2017, 9, 322.	3.3	53
28	HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy. Aids, 2015, 29, 275-286.	2.2	50
29	The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology, 2015, 12, 53.	2.0	48
30	Cooperative and Specific Binding of Vif to the 5′ Region of HIV-1 Genomic RNA. Journal of Molecular Biology, 2005, 354, 55-72.	4.2	46
31	HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus. Viruses, 2015, 7, 199-218.	3.3	45
32	Structural Variability of the Initiation Complex of HIV-1 Reverse Transcription. Journal of Biological Chemistry, 2004, 279, 35923-35931.	3.4	42
33	Advances in the Structural Understanding of Vif Proteins. Current HIV Research, 2008, 6, 91-99.	0.5	42
34	Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex. Nature Structural and Molecular Biology, 2017, 24, 152-161.	8.2	40
35	Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Research, 2012, 169, 324-339.	2.2	37
36	The C-terminal p6 domain of the HIV-1 Pr55 ^{Gag} precursor is required for specific binding to the genomic RNA. RNA Biology, 2018, 15, 923-936.	3.1	37

JEAN-CHRISTOPHE PAILLART

#	Article	IF	CITATIONS
37	Mechanisms of Inhibition of in Vitro Dimerization of HIV Type I RNA by Sense and Antisense Oligonucleotides. Journal of Biological Chemistry, 1996, 271, 28812-28817.	3.4	36
38	RNA and DNA Binding Properties of HIV-1 Vif Protein. Journal of Biological Chemistry, 2007, 282, 26361-26368.	3.4	33
39	The evolution of RNA structural probing methods: From gels to nextâ€generation sequencing. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1518.	6.4	33
40	In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Research, 2018, 46, e57-e57.	14.5	31
41	Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Research, 2011, 39, 2404-2415.	14.5	30
42	A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site. Biochimie, 2007, 89, 1195-1203.	2.6	28
43	Translational regulation of APOBEC3G mRNA by Vif requires its 5′UTR and contributes to restoring HIV-1 infectivity. Scientific Reports, 2016, 6, 39507.	3.3	26
44	Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection. Retrovirology, 2020, 17, 25.	2.0	23
45	Synthesis of a Neamine Dimer Targeting the Dimerization Initiation Site of HIV-1 RNA. Organic Letters, 2007, 9, 4415-4418.	4.6	22
46	In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs. Rna, 2007, 13, 2141-2150.	3.5	22
47	5-Modified-2′-dU and 2′-dC as Mutagenic Anti HIV-1 Proliferation Agents: Synthesis and Activity. Journal of Medicinal Chemistry, 2010, 53, 1534-1545.	6.4	22
48	Oligonucleotide-Mediated Inhibition of Genomic RNA Dimerization of HIV-1 Strains MAL and LAI: A Comparative Analysis. Oligonucleotides, 1998, 8, 517-529.	4.3	19
49	APOBEC3G Impairs the Multimerization of the HIV-1 Vif Protein in Living Cells. Journal of Virology, 2013, 87, 6492-6506.	3.4	19
50	Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner. Nucleic Acids Research, 2017, 45, gkw1289.	14.5	18
51	Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling. Retrovirology, 2016, 13, 54.	2.0	17
52	Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophysical Journal, 2020, 119, 419-433.	0.5	15
53	Importance of Viral Late Domains in Budding and Release of Enveloped RNA Viruses. Viruses, 2021, 13, 1559.	3.3	15
54	The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Research, 2012, 169, 361-376.	2.2	13

#	Article	IF	CITATIONS
55	Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. RNA Biology, 2014, 11, 906-920.	3.1	13
56	Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses, 2021, 13, 617.	3.3	13
57	In Search of New Inhibitors of HIV-1 Replication: Synthesis and Study of 1-(2′-Deoxy-β-D-Ribofuranosyl)-1,2,4-Triazole-3-Carboxamide as a Selective Viral Mutagenic Agent. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 743-746.	1.1	12
58	Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. International Journal of Molecular Sciences, 2021, 22, 2871.	4.1	10
59	Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues. Journal of Biological Chemistry, 2015, 290, 371-383.	3.4	8
60	Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Scientific Reports, 2016, 6, 27536.	3.3	8
61	The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses, 2021, 13, 2312.	3.3	8
62	The use of chemical modification interference and inverse PCR mutagenesis to identify the dimerization initiation site of HIV-1 genomic RNA. Pharmaceutica Acta Helvetiae, 1996, 71, 21-28.	1.2	7
63	Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 ^{Gag} and its maturation products. RNA Biology, 2022, 19, 191-205.	3.1	6
64	Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses, 2021, 13, 1894.	3.3	5
65	A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines, 2022, 10, 13.	3.2	5
66	HIV-1 specifically encapsidates other nucleic acids than its genomic RNA. Retrovirology, 2009, 6, .	2.0	0
67	RNA remarkably promotes HIV-1 protease fast turnover for NCp15 processing in mild acidic conditions leading to condensation of HIV-1 nucleocapsid. Retrovirology, 2013, 10, .	2.0	0
68	Synthesis and primary evaluation of nucleoside analogues directed against HIV-1. , 2008, , .		0
69	APOBEC3F/G and Vif: Action and Counteractions. , 2018, , 122-133.		Ο