
Marion Sebire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour, 2008, 145, 1307-1328.	0.4	104
2	Non-invasive measurement of 11-ketotestosterone, cortisol and androstenedione in male three-spined stickleback (Gasterosteus aculeatus). General and Comparative Endocrinology, 2007, 152, 30-38.	0.8	84
3	Settlement Behaviour of Marine Invertebrate Larvae Measured by EthoVision 3.0. Biofouling, 2004, 20, 211-217.	0.8	64
4	The model anti-androgen flutamide suppresses the expression of typical male stickleback reproductive behaviour. Aquatic Toxicology, 2008, 90, 37-47.	1.9	55
5	The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus. Ecotoxicology, 2009, 18, 122-133.	1.1	41
6	Prozac affects stickleback nest quality without altering androgen, spiggin or aggression levels during a 21-day breeding test. Aquatic Toxicology, 2015, 168, 78-89.	1.9	29
7	Environmental chemicals active as human antiandrogens do not activate a stickleback androgen receptor but enhance a feminising effect of oestrogen in roach. Aquatic Toxicology, 2015, 168, 48-59.	1.9	25
8	Short-term exposure to a treated sewage effluent alters reproductive behaviour in the three-spined stickleback (Gasterosteus aculeatus). Aquatic Toxicology, 2011, 105, 78-88.	1.9	23
9	Exposure of sticklebacks (Gasterosteus aculeatus) to cadmium sulfide nanoparticles: Biological effects and the importance of experimental design. Marine Environmental Research, 2008, 66, 161-163.	1.1	19
10	Skin swabbing is a refined technique to collect DNA from model fish species. Scientific Reports, 2020, 10, 18212.	1.6	18
11	Further refinement of the nonâ€invasive procedure for measuring steroid production in the male threeâ€spined stickleback <i>Gasterosteus aculeatus</i> . Journal of Fish Biology, 2009, 75, 2082-2094.	0.7	17
12	Indices of stress in three-spined sticklebacks Gasterosteus aculeatus in relation to extreme weather events and exposure to wastewater effluent. Journal of Fish Biology, 2011, 79, 256-279.	0.7	12
13	In vivo endocrine effects of naphthenic acids in fish. Chemosphere, 2013, 93, 2356-2364.	4.2	12
14	Microarray analysis of di-n-butyl phthalate and 17α ethinyl-oestradiol responses in three-spined stickleback testes reveals novel candidate genes for endocrine disruption. Ecotoxicology and Environmental Safety, 2016, 124, 96-104.	2.9	10
15	A preliminary investigation into biosecurity treatments to manage the invasive killer shrimp (Dikerogammarus villosus). Management of Biological Invasions, 2018, 9, 101-113.	0.5	10
16	Three-spined stickleback: an emerging model in environmental endocrine disruption. Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, 2007, 14, 263-83.	0.1	8
17	Hormonal changes over the spawning cycle in the female three-spined stickleback, Gasterosteus aculeatus. General and Comparative Endocrinology, 2018, 257, 97-105.	0.8	5
18	Application of Passive Sampling to Characterise the Fish Exometabolome. Metabolites, 2017, 7, 8.	1.3	4

0

#	Article	IF	CITATIONS
19	Androgen Elevation Accelerates Reproductive Senescence in Three-Spined Stickleback. Frontiers in Cell and Developmental Biology, 2021, 9, 752352.	1.8	1

20 The housing, care, and use of a laboratory three-spined stickleback colony. , 2022, , 349-371.