Hang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969345/publications.pdf Version: 2024-02-01

		566801	525886
32	754	15	27
papers	citations	h-index	g-index
32	32	32	973
all docs	docs citations	times ranked	citing authors

Намс Ни

#	Article	IF	CITATIONS
1	Redox-Sensitive Hydroxyethyl Starch–Doxorubicin Conjugate for Tumor Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 30833-30844.	4.0	99
2	Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC. Nanoscale, 2019, 11, 6384-6393.	2.8	92
3	α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 19215-19230.	4.0	71
4	Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chemical Engineering Journal, 2018, 349, 129-145.	6.6	65
5	Nanocolloidosomes with Selective Drug Release for Active Tumor-Targeted Imaging-Guided Photothermal/Chemo Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9, 42225-42238.	4.0	58
6	Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. Journal of Controlled Release, 2018, 275, 67-77.	4.8	50
7	Enhancing Doxorubicin Delivery toward Tumor by Hydroxyethyl Starch- <i>g</i> -Polylactide Partner Nanocarriers. ACS Applied Materials & Interfaces, 2017, 9, 10481-10493.	4.0	40
8	Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. Journal of Colloid and Interface Science, 2022, 612, 246-260.	5.0	37
9	Hydroxyethyl starch based smart nanomedicine. RSC Advances, 2021, 11, 3226-3240.	1.7	30
10	Transformable nanotherapeutics enabled by ICG: towards enhanced tumor penetration under NIR light irradiation. Nanoscale, 2019, 11, 6217-6227.	2.8	26
11	pH‣ensitive, Cerebral Vasculatureâ€Targeting Hydroxyethyl Starch Functionalized Nanoparticles for Improved Angiogenesis and Neurological Function Recovery in Ischemic Stroke. Advanced Healthcare Materials, 2021, 10, e2100028.	3.9	20
12	iRGDâ€paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Development Research, 2019, 80, 1080-1088.	1.4	19
13	iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale, 2018, 10, 10514-10527.	2.8	18
14	Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Advances, 2019, 1, 1002-1012.	2.2	17
15	Hydroxyethyl Starch-Based Nanoparticles Featured with Redox-Sensitivity and Chemo-Photothermal Therapy for Synergized Tumor Eradication. Cancers, 2019, 11, 207.	1.7	17
16	A review of the effects and molecular mechanisms of dimethylcurcumin (ASCâ€J9) on androgen receptorâ€related diseases. Chemical Biology and Drug Design, 2021, 97, 821-835.	1.5	14
17	Synthesis of novel tanshinone derivatives for treatment of castrationâ€resistant prostate cancer. Chemical Biology and Drug Design, 2019, 94, 1656-1663.	1.5	10
18	Coâ€delivery of docetaxel and retinoic acid by poly (ethylene glycol)â€retinoic acid conjugates based micelles for synergistic prostate cancer therapy. Micro and Nano Letters, 2021, 16, 336-343.	0.6	9

Hang Hu

#	Article	IF	CITATIONS
19	Methoxylpoly(ethylene glycol)â€retinoic acid Micelles Loaded with Dimethylcurcumin for Efficient Castrationâ€Resistant Prostate Cancer Therapy. ChemistrySelect, 2019, 4, 12015-12021.	0.7	8
20	Branched worm-like nanoparticles featured with programmed drug release for synergistic castration-resistant prostate cancer therapy. Journal of Materials Science, 2020, 55, 6992-7008.	1.7	8
21	Synthesis and Herbicidal Activities of Novel Substituted Acetophenone Oxime Esters of Pyrithiobac. ChemistrySelect, 2020, 5, 69-74.	0.7	7
22	Hydroxyethyl starch-new indocyanine green conjugates for enhanced cancer photodynamic therapy. Carbohydrate Research, 2021, 508, 108416.	1.1	7
23	Synthesis and Herbicidal Activity of Oâ€(2,6â€Bis(4,6â€dimethoxypyrimidinâ€2â€yloxy) benzoyl)oxime 3â€Trifluoromethylacetophenone. ChemistrySelect, 2019, 4, 11771-11775.	0.7	6
24	A comparative study of the in vitro antitumor effect of mannoseâ€doxorubicin conjugates with different linkers. Drug Development Research, 2021, , .	1.4	6
25	Application of mesoporous calcium silicate nanoparticles as a potential SD carrier to improve the solubility of curcumin. Journal of Dispersion Science and Technology, 2023, 44, 2258-2266.	1.3	6
26	Design and evaluation of a solid dispersion and thermosensitive hydrogel combined local delivery system of dimethoxycurcumin. Journal of Drug Delivery Science and Technology, 2019, 53, 101150.	1.4	5
27	Polyethylene glycol-modified mesoporous polydopamine nanoparticles co-loaded with dimethylcurcumin and indocyanine green for combination therapy of castration-resistant prostate cancer. Journal of Drug Delivery Science and Technology, 2022, 69, 103158.	1.4	4
28	Encapsulation and Delivery of Dimethylcurcumin by Using Nanoparticles of a Polyethyleneâ€Glycolâ€Based Dimethylcurcumin Prodrug. ChemistrySelect, 2021, 6, 3013-3021.	0.7	3
29	SynthesisÂand Herbicidal Activity of Trifluoromethylâ€Substituted Phenyl Alkyl Ketoxime Esters of Bispyribac. ChemistrySelect, 2020, 5, 4194-4199.	0.7	1
30	A new synthetic method toward a key intermediate in the total synthesis of alkannin and shikonin. Journal of Chemical Research, 0, , 174751982110116.	0.6	1
31	Facile and green synthesis of 4,6-dimethoxy-2-methylsulfonylpyrimidine using chloromethane as methylating agent. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2021, 44, 72-76.	0.6	0
32	Synthesis of Novel Pyrimidinylselenium Compounds as Acetolactate Synthaseâ€Inhibiting Herbicides. ChemistrySelect, 2022, 7, .	0.7	0