Sajjad Abdollahramezani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/79692/publications.pdf

Version: 2024-02-01

50 papers

2,047 citations

394421 19 h-index 26 g-index

50 all docs 50 docs citations

50 times ranked

1720 citing authors

#	Article	IF	CITATIONS
1	Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 2022, 13, 1696.	12.8	125
2	Dynamically tunable second-harmonic generation using hybrid nanostructures incorporating phase-change chalcogenides. Nanophotonics, 2022, 11, 2727-2735.	6.0	13
3	Broadbandâ€Tunable Thirdâ€Harmonic Generation Using Phaseâ€Change Chalcogenides. Advanced Photonics Research, 2022, 3, .	3.6	5
4	Phase-Change Material Micro-Displays. , 2021, , .		0
5	Reconfigurable near-infrared metasurfaces using phase-change materials., 2021,,.		O
6	Dynamic Hybrid Metasurfaces. Nano Letters, 2021, 21, 1238-1245.	9.1	85
7	Broadband-Tunable Third-Harmonic Generation Using Phase-Change Chalcogenides. , 2021, , .		1
8	ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Optics Express, 2021, 29, 20449.	3.4	62
9	Dynamically tunable third-harmonic generation with all-dielectric metasurfaces incorporating phase-change chalcogenides. Optics Letters, 2021, 46, 5296.	3.3	10
10	Dynamically tunable hybrid plasmonic-dielectric metasurfaces. , 2021, , .		0
11	Electrically tunable phase-change metasurfaces using transparent conductive oxide microheaters. , 2021, , .		O
12	Knowledge Discovery in Nanophotonics Using Geometric Deep Learning. Advanced Intelligent Systems, 2020, 2, 1900132.	6.1	76
13	Synthetic Engineering of Morphology and Electronic Band Gap in Lateral Heterostructures of Monolayer Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6323-6330.	14.6	24
14	Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. Npj Computational Materials, 2020, 6, .	8.7	139
15	Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 2020, 9, 1189-1241.	6.0	294
16	Meta-optics for spatial optical analog computing. Nanophotonics, 2020, 9, 4075-4095.	6.0	86
17	Electrically programmable phased-array antenna using phase-change materials. , 2020, , .		O
18	Geometric Deep Learning Unlocks the Underlying Physics of Nanostructures. , 2020, , .		1

#	Article	IF	CITATIONS
19	Programmable metasurfaces employing phase-change-dielectric materials architecture. , 2020, , .		O
20	Mixed Eletro-optic Metasurface with a Hybrid Plasmonic-phase-change Material Architecture., 2020,,.		0
21	Fano Resonant All-dielectric HfO2 Metasurfaces for Full Color Generation Designed by Deep Learning. , 2020, , .		O
22	Tunable Polarization-independent Absorber Using a Hybrid Plasmonic and Phase-change Chalcogenide Platform. , 2020, , .		0
23	Inverse Design of Nanophotonic Structures Using a Hybrid Dimensionality Reduction Technique. , 2020, , .		1
24	Cracking the Design Complexity of Nanostructures Using Geometric Deep Learning. , 2020, , .		1
25	Deep Learning Reveals Underlying Physics of Light–Matter Interactions in Nanophotonic Devices. Advanced Theory and Simulations, 2019, 2, 1900088.	2.8	77
26	Full color generation with Fano-type resonant HfO ₂ nanopillars designed by a deep-learning approach. Nanoscale, 2019, 11, 21266-21274.	5.6	89
27	Mitigating inverse design complexity of nano-antennas using a novel dimensionality reduction approach (Conference Presentation)., 2019,,.		3
28	Dimensionality Reduction Based Method for Design and Optimization of Optical Nanostructures Using Neural Network., 2019,,.		1
29	Structural Colors by Fano-resonances Supported in All-dielectric Metasurfaces Made of HfO2. , 2019, , .		1
30	Nanophotonics Design Platform Based on Double-step Dimensionality Reduction. , 2019, , .		1
31	Nonvolatile Tunable Integrated Mid-Infrared GST-SiC Metasurfaces. , 2018, , .		O
32	Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations. IEEE Transactions on Communications, 2018, , 1-1.	7.8	133
33	Dynamic Dielectric Metasurfaces Incorporating Phase-Change Material. , 2018, , .		2
34	Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks. Plasmonics, 2017, 12, 393-398.	3.4	105
35	Visible light for communication, indoor positioning, and dimmable illumination: A system design based on overlapping pulse position modulation. Optik, 2017, 151, 110-122.	2.9	20
36	Extending chip-based Kerr-comb to visible spectrum by dispersive wave engineering. Optics Express, 2017, 25, 22362.	3.4	10

#	Article	IF	Citations
37	Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters, 2017, 42, 1197.	3.3	91
38	Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles. , $2016, , .$		60
39	Designing a dimmable OPPM-based VLC system under channel constraints. , 2016, , .		11
40	Broadband, Polarization-Insensitive, and Wide-Angle Optical Absorber Based on Fractal Plasmonics. IEEE Photonics Technology Letters, 2016, 28, 2545-2548.	2.5	27
41	Analog computing by Brewster effect. Optics Letters, 2016, 41, 3467.	3.3	120
42	Analog optical computing based on a dielectric meta-reflect array. Optics Letters, 2016, 41, 3451.	3.3	121
43	Design of mid-infrared ultra-wideband metallic absorber based on circuit theory. Optics Communications, 2016, 381, 309-313.	2.1	29
44	Beam focusing using two-dimensional graphene-based meta-reflect-array. , 2016, , .		2
45	Mining DNA sequences based on spatially coded technique using spatial light modulator. , 2016, , .		O
46	Circuit Model for Plasmons on Graphene With One-Dimensional Conductivity Profile. IEEE Photonics Technology Letters, 2016, 28, 355-358.	2.5	11
47	An Efficient High Power RF Dummy-Load. IEEE Microwave and Wireless Components Letters, 2015, 25, 409-411.	3.2	5
48	Analog computing using graphene-based metalines. Optics Letters, 2015, 40, 5239.	3.3	130
49	Beam manipulating by gate-tunable graphene-based metasurfaces. Optics Letters, 2015, 40, 5383.	3.3	74
50	Beam manipulating by graphene-based metasurface transmit-array. , 2015, , .		1