Kathy K Niakan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969180/publications.pdf Version: 2024-02-01

Κλτην Κ. Νιλκλη

#	Article	IF	CITATIONS
1	Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons. Science, 2008, 321, 1218-1221.	12.6	1,826
2	Self-organization of the human embryo in the absence of maternal tissues. Nature Cell Biology, 2016, 18, 700-708.	10.3	516
3	Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development (Cambridge), 2015, 142, 3151-65.	2.5	343
4	BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell, 2011, 9, 144-155.	11.1	340
5	Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 2017, 550, 67-73.	27.8	315
6	Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Developmental Biology, 2013, 375, 54-64.	2.0	298
7	Human pre-implantation embryo development. Development (Cambridge), 2012, 139, 829-841.	2.5	289
8	Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature, 2016, 534, 383-386.	27.8	278
9	Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes and Development, 2010, 24, 312-326.	5.9	270
10	X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood, 2002, 100, 2040-2045.	1.4	194
11	Optimal Timing of Inner Cell Mass Isolation Increases the Efficiency of Human Embryonic Stem Cell Derivation and Allows Generation of Sibling Cell Lines. Cell Stem Cell, 2009, 4, 103-106.	11.1	171
12	Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature, 2020, 587, 443-447.	27.8	162
13	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
14	Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	123
15	Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes and Development, 2015, 29, 1239-1255.	5.9	120
16	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	27.8	114
17	Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Molecular Genetics and Metabolism, 2006, 88, 261-271.	1.1	98
18	Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nature Protocols, 2013, 8, 1028-1041.	12.0	97

ΚΑΤΗΥ Κ ΝΙΑΚΑΝ

#	Article	IF	CITATIONS
19	Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development (Cambridge), 2012, 139, 2866-2877.	2.5	87
20	SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Developmental Cell, 2018, 47, 645-659.e6.	7.0	68
21	Human Pre-gastrulation Development. Current Topics in Developmental Biology, 2018, 128, 295-338.	2.2	59
22	Human embryo research, stem cell-derived embryo models and inÂvitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Reports, 2021, 16, 1416-1424.	4.8	59
23	Human germline genome editing. Nature Cell Biology, 2019, 21, 1479-1489.	10.3	45
24	IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 2020, 11, 764.	12.8	41
25	TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589, 103-109.	27.8	41
26	Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development. Stem Cell Reports, 2017, 9, 1377-1386.	4.8	39
27	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Developmental Biology, 2020, 36, 411-440.	9.4	39
28	IL1RAPL1 is associated with mental retardation in patients with complex glycerol kinase deficiency who have deletions extending telomeric ofDAX1. Human Mutation, 2004, 24, 273-273.	2.5	36
29	Mapping of a syndrome of X-linked thrombocytopenia with thalassemia to band Xp11-12: further evidence of genetic heterogeneity of X-linked thrombocytopenia. Blood, 2000, 95, 2262-2268.	1.4	25
30	Pairing of Homologous Regions in the Mouse Genome Is Associated with Transcription but Not Imprinting Status. PLoS ONE, 2012, 7, e38983.	2.5	24
31	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	2.5	24
32	TGFβ signalling is required to maintain pluripotency of human naÃ⁻ve pluripotent stem cells. ELife, 2021, 10, .	6.0	24
33	Effects of thyroid hormone on mitochondria and metabolism of human preimplantation embryos. Stem Cells, 2020, 38, 369-381.	3.2	20
34	Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2712-2725.	3.2	16
35	The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes. Nature Communications, 2020, 11, 2598.	12.8	16
36	KLF17 promotes human naÃ ⁻ ve pluripotency but is not required for its establishment. Development (Cambridge), 2021, 148, .	2.5	13

ΚΑΤΗΥ Κ ΝΙΑΚΑΝ

#	Article	IF	CITATIONS
37	Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Mechanisms of Development, 2017, 145, S26.	1.7	4
38	GIANI – open-source software for automated analysis of 3D microscopy images. Journal of Cell Science, 2022, 135, .	2.0	4
39	Generating CRISPRâ€Cas9â€Mediated Null Mutations and Screening Targeting Efficiency in Human Pluripotent Stem Cells. Current Protocols, 2021, 1, e232.	2.9	2
40	Self-Organization of the Human Embryo in the Absence of Maternal Tissues. Obstetrical and Gynecological Survey, 2016, 71, 718-719.	0.4	0