Yashonath Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of hydrocarbon mixture of neopentane and <i>n</i> â€hexane using <scp>NaY</scp> zeolite: Large distinct diffusivity. Journal of Computational Chemistry, 2022, 43, 660-673.	1.5	0
2	Kinetic Separation of <i>n</i> â€Hexane from 2,2â€Dimethyl Butane in Zeolite Y Using the Novel Levi–Blow Method. Advanced Theory and Simulations, 2022, 5, 2100204.	1.3	0
3	Separating a linear C ₅ hydrocarbon from a branched C ₆ hydrocarbon: <i>n</i> -pentane from 2,2-dimethyl butane using levitation and blow torch effects. Physical Chemistry Chemical Physics, 2021, 23, 18102-18111.	1.3	1
4	High purity separation of n-pentane from neopentane using a nano-crystal of zeolite Y. Journal of Chemical Physics, 2021, 155, 014702.	1.2	3
5	Shared hydrogen bonds: water in aluminated faujasite. Physical Chemistry Chemical Physics, 2020, 22, 1632-1639.	1.3	4
6	Understanding fast diffusion of solutes in solid solutions: A molecular dynamics study of solutes in body centered cubic solid. Journal of Chemical Physics, 2020, 153, 244503.	1.2	5
7	A new empirical potential for zeolite with variable Si/Al ratio: Simulations vs. experiments. Microporous and Mesoporous Materials, 2020, 300, 110119.	2.2	3
8	Separating Hydrocarbon Mixtures by Driving the Components in Opposite Directions: High Degree of Separation Factor and Energy Efficiency. Physical Review Letters, 2020, 124, 255901.	2.9	10
9	Mutual Diffusivity of an <i>n</i> -Hexane-2,2-Dimethyl Butane Binary Mixture Confined to Zeolite Y. Journal of Physical Chemistry B, 2020, 124, 8618-8627.	1.2	1
10	Simulations on "Powder―Samples for Better Agreement with Macroscopic Measurements. Journal of Physical Chemistry C, 2019, 123, 16172-16178.	1.5	9
11	Bridging the gap between diffusivities from experiment and molecular dynamics: n-hexane and 2,2-dimethyl butane in zeolite BEA. Microporous and Mesoporous Materials, 2019, 287, 124-134.	2.2	8
12	lonic conductivity in aqueous electrolyte solutions: Insights from computer simulations. Journal of Molecular Liquids, 2019, 277, 506-515.	2.3	13
13	Using porphyrin–amino acid pairs to model the electrochemistry of heme proteins: experimental and theoretical investigations. Physical Chemistry Chemical Physics, 2018, 20, 10018-10029.	1.3	14
14	Diffusion processes in a poly-crystalline zeolitic material: A molecular dynamics study. Journal of Chemical Physics, 2018, 149, 064702.	1.2	11
15	High Interfacial Barriers at Narrow Carbon Nanotube–Water Interfaces. Langmuir, 2018, 34, 8099-8111.	1.6	27
16	Organization of Copper Azide Clusters into Twoâ€Dimensional Structures: Synthesis, Structure, and Magnetic Properties. European Journal of Inorganic Chemistry, 2017, 2017, 2173-2183.	1.0	5
17	Rotation driven translational diffusion of polyatomic ions in water: A novel mechanism for breakdown of Stokes-Einstein relation. Journal of Chemical Physics, 2017, 146, 164502.	1.2	38
18	Hexane Isomers in Faujasite: Anomalous Diffusion and Kinetic Separation. Journal of Physical Chemistry C. 2017, 121, 14745-14756.	1.5	14

#	Article	IF	CITATIONS
19	Concentration Dependent Self-Assembly of TrK-NGF Receptor Derived Tripeptide: New Insights from Experiment and Computer Simulations. Journal of Physical Chemistry B, 2017, 121, 815-824.	1.2	24
20	Understanding Translational–Rotational Coupling in Liquid Water through Changes in Mass Distribution. Journal of Physical Chemistry B, 2017, 121, 11344-11355.	1.2	4
21	A molecular dynamics calculation of solid phase of malonic acid: role of hydrogen-bond chains and the elastic constants. Journal of Chemical Sciences, 2017, 129, 963-974.	0.7	1
22	10.1063/1.4981257.1.,2017,,.		0
23	Effect of interionic interactions on the structure and dynamics of ionic solvation shells in aqueous electrolyte solutions. RSC Advances, 2016, 6, 114666-114675.	1.7	8
24	Coupled jump rotational dynamics in aqueous nitrate solutions. Journal of Chemical Physics, 2016, 145, 234502.	1.2	26
25	Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics. Journal of Chemical Physics, 2015, 142, 124502.	1.2	9
26	Influence of a Counterion on the Ion Atmosphere of an Anion: A Molecular Dynamics Study of LiX and CsX (X = F [–] , Cl [–] , I [–]) in Methanol. Journal of Physical Chemistry B, 2015, 119, 10921-10933.	1.2	9
27	Structure and dynamics of cumene and 1,2,4-trimethylbenzene mixture in NaY zeolite: a molecular dynamics simulation study. Molecular Simulation, 2015, 41, 423-431.	0.9	2
28	A molecular dynamics study of ambient and high pressure phases of silica: Structure and enthalpy variation with molar volume. Journal of Chemical Physics, 2014, 140, 244512.	1.2	10
29	Structural Insights into Proton Conduction in Gallic Acid–Isoniazid Cocrystals. Crystal Growth and Design, 2014, 14, 423-426.	1.4	38
30	Relation Between the Diffusivity, Viscosity, and Ionic Radius of LiCl in Water, Methanol, and Ethylene Glycol: A Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2013, 117, 8196-8208.	1.2	34
31	Dependence of diffusivity on density and solute diameter in liquid phase: A molecular dynamics study of Lennard-Jones system. Journal of Chemical Physics, 2012, 136, 144505.	1.2	7
32	Effect of pressure on the ionic conductivity of Li+ and Clâ^' ions in water. Journal of Chemical Physics, 2012, 137, 144506.	1.2	6
33	Transport in nanoporous zeolites: Relationships between sorbate size, entropy, and diffusivity. Journal of Chemical Physics, 2012, 136, 174510.	1.2	27
34	Variation of diffusivity with the cation radii in molten salts of superionic conductors containing iodine anion: A molecular dynamics study. Journal of Chemical Sciences, 2012, 124, 159-166.	0.7	2
35	Levitation Effect: Role of Symmetry and Dependence of Diffusivity on the Bond Length of Homonuclear and Heteronuclear Diatomic Species. Journal of Physical Chemistry B, 2011, 115, 3514-3521.	1.2	1
36	A molecular dynamics study and molecular level explanation of pressure dependence of ionic conductivity of potassium chloride in water. Physical Chemistry Chemical Physics, 2011, 13, 10877.	1.3	8

#	Article	IF	CITATIONS
37	Influence of the Methane–Zeolite a Interaction Potential on the Concentration Dependence of Self-Diffusivity. Adsorption Science and Technology, 2011, 29, 553-567.	1.5	0
38	Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY. Journal of Chemical Physics, 2010, 132, 144507.	1.2	34
39	lons in water: Role of attractive interactions in size dependent diffusivity maximum. Journal of Chemical Physics, 2010, 133, 114504.	1.2	8
40	Diffusion of Pure CH ₄ and Its Binary Mixture with CO ₂ in Faujasite NaY: A Combination of Neutron Scattering Experiments and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2010, 114, 5027-5034.	1.5	35
41	Dependence of self-diffusivity on size of impurity atoms in a face-centred cubic solid: existence of an anomalous maximum. Molecular Simulation, 2009, 35, 151-161.	0.9	1
42	A comparative molecular dynamics study of diffusion of n-decane and 3-methyl pentane in Y zeolite. Journal of Chemical Sciences, 2009, 121, 921-927.	0.7	7
43	How does contrasting dependence of impurity-atom diffusivity on the density of host disordered medium arise?. Indian Journal of Physics, 2009, 83, 31-47.	0.9	1
44	Structure, energetics and diffusion properties of isomers of trimethyl benzene in β zeolite: Uptake and Monte Carlo simulation study. Microporous and Mesoporous Materials, 2009, 125, 135-142.	2.2	4
45	Neutron Scattering and Molecular Dynamics Evidence for Levitation Effect in Nanopores. Journal of Physical Chemistry B, 2009, 113, 12635-12638.	1.2	15
46	Diffusion in Nanoporous Phases:Â Size Dependence and Levitation Effect. Journal of Physical Chemistry B, 2008, 112, 665-686.	1.2	45
47	Comment on "High-Accuracy Estimation of â€~Slow' Molecular Diffusion Rates in Zeolite Nanopores, Based on Free Energy Calculations at an Ultrahigh Temperature― Journal of Physical Chemistry C, 2008, 112, 17030-17031.	1.5	6
48	Correlation between conductivity or diffusivity and activation energy in amorphous solids. Journal of Chemical Physics, 2008, 129, 144103.	1.2	20
49	Diffusion of 1,3-butadiene adsorbed in Na–Y zeolite: Neutron scattering study. Chemical Physics Letters, 2007, 442, 311-315.	1.2	14
50	Ionic conduction in the solid state. Journal of Chemical Sciences, 2006, 118, 135-154.	0.7	157
51	Separation of Mixtures at Nano Length Scales: Blow Torch and Levitation Effectâ€. Journal of Physical Chemistry B, 2006, 110, 3835-3840.	1.2	4
52	Evidence in Support of Levitation Effect as the Reason for Size Dependence of Ionic Conductivity in Water:Â A Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2006, 110, 12179-12190.	1.2	22
53	Breakdown of the Stokesâ^'Einstein Relationship: Role of Interactions in the Size Dependence of Self-Diffusivity. Journal of Physical Chemistry B, 2006, 110, 17207-17211.	1.2	40
54	Existence of a Size-Dependent Diffusivity Maximum for Uncharged Solutes in Water and Its Implications. Journal of Physical Chemistry B, 2006, 110, 12072-12079.	1.2	12

#	Article	IF	CITATIONS
55	Classification of the third regime in the size dependence of self diffusivity in levitation effect. Chemical Physics Letters, 2005, 402, 222-226.	1.2	3
56	Levitation effect: Size-dependent maximum in rotational diffusion in confined systems. Journal of Chemical Physics, 2005, 122, 144505.	1.2	4
57	Effect of Pressure on Pedal Motion in Stilbene Molecular Crystals and Its Dependence on the Crystallographic Site. Journal of Physical Chemistry B, 2005, 109, 12107-12114.	1.2	3
58	High-Pressure Study of Adamantane:Â Variable Shape Simulations up to 26 GPa. Journal of Physical Chemistry B, 2005, 109, 17296-17303.	1.2	8
59	Large Distinct Diffusivity in Binary Mixtures Confined to Zeolite NaY. Journal of Physical Chemistry B, 2005, 109, 22092-22095.	1.2	7
60	Size-Dependent Maximum in Ion Conductivity:Â The Levitation Effect Provides an Alternative Explanation. Journal of Physical Chemistry B, 2005, 109, 8120-8124.	1.2	37
61	Levitation Effect:Â Distinguishing Anomalous from Linear Regime of Guests Sorbed in Zeolites through the Decay of Intermediate Scattering Function and Wavevector Dependence of Self-Diffusivity. Journal of Physical Chemistry B, 2005, 109, 3979-3983.	1.2	17
62	The Stokesâ^'Einstein Relationship and the Levitation Effect: Size-Dependent Diffusion Maximum in Dense Fluids and Close-Packed Disordered Solids. Journal of Physical Chemistry B, 2005, 109, 5824-5835.	1.2	28
63	Pressure Induced Orientational Ordering inp-Terphenyl. Journal of Physical Chemistry B, 2005, 109, 1433-1440.	1.2	19
64	Pressure-Induced Ordering in Adamantane: A Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2005, 109, 2014-2020.	1.2	12
65	Translational and rotational diffusion of SF6 in zeolite NaY. Journal of Chemical Physics, 2004, 120, 5315-5321.	1.2	9
66	Acetylene diffusion in Na-Y zeolite. Pramana - Journal of Physics, 2004, 63, 449-453.	0.9	14
67	Anomalous diffusion of linear and branched pentanes within zeolite NaY. Molecular Physics, 2004, 102, 1057-1066.	0.8	13
68	Distinct Diffusion in Binary Mixtures Confined in Slit Graphite Pores. Journal of Physical Chemistry B, 2004, 108, 4411-4421.	1.2	13
69	Diffusion Anomaly at Low Temperatures in Confined Systems from the Rare Events Method. Journal of Physical Chemistry B, 2004, 108, 7098-7101.	1.2	9
70	Structure, Energetics, and Dynamics of Pedal-Like Motion in Stilbene from Molecular Simulation and ab Initio Calculations. Journal of Physical Chemistry B, 2004, 108, 17403-17411.	1.2	14
71	High Pressure Phase of Biphenyl at Room Temperature:  A Monte Carlo Study. Journal of Physical Chemistry B, 2004, 108, 4178-4184.	1.2	18
72	Influence of temperature inhomogeneity on product profile of reactions occurring within zeolites. Journal of Chemical Sciences, 2003, 115, 543-552.	0.7	1

#	Article	IF	CITATIONS
73	Rotation of propane molecules in supercages of Na–Y zeolite. Chemical Physics, 2003, 292, 217-222.	0.9	9
74	n-Pentane and Isopentane in One-Dimensional Channels. Journal of the American Chemical Society, 2003, 125, 7425-7434.	6.6	31
75	Diffusion of Propane in Zeolite NaY: A Molecular Dynamics and Quasi-Elastic Neutron Scattering Study. Journal of Physical Chemistry B, 2003, 107, 527-533.	1.2	44
76	Adsorption Isotherm and Other Properties of Methane in Zeolite A from an Intermolecular Potential Derived from ab Initio Calculations. Journal of the American Chemical Society, 2003, 125, 16192-16193.	6.6	7
77	Diffusion Anomaly as a Function of Molecular Length of Linear Molecules:Â Levitation Effect. Journal of the American Chemical Society, 2003, 125, 7116-7123.	6.6	64
78	Source of Reaction-Diffusion Coupling in Confined Systems due to Temperature Inhomogeneities. Physical Review Letters, 2002, 88, 120601.	2.9	4
79	Mutual diffusion in a binary Ar-Kr mixture confined within zeolite NaY. Physical Review E, 2002, 65, 061202.	0.8	19
80	Orientational preference and influence of rotation on methane mobility in one-dimensional channels. Journal of Chemical Physics, 2002, 116, 2175-2183.	1.2	24
81	Ion Mobility and Levitation Effect: Anomalous Diffusion in Nasicon-Type Structure. Journal of Physical Chemistry B, 2002, 106, 3443-3448.	1.2	16
82	A Full Interionic Potential for Na1+xZr2SixP3-xO12Superionic Conductors. Journal of the American Chemical Society, 2002, 124, 3828-3829.	6.6	24
83	Structure, Conductivity, and Ionic Motion in Na1+xZr2SixP3-xO12: A Simulation Study. Journal of Physical Chemistry B, 2002, 106, 7081-7089.	1.2	40
84	Study of Translational and Rotational Mobility and Orientational Preference of Ethane in One-Dimensional Channels. Journal of Physical Chemistry A, 2002, 106, 7130-7137.	1.1	18
85	Estimation of slow diffusion rates in confined systems: CCl4in zeolite NaA. Molecular Physics, 2002, 100, 641-647.	0.8	11
86	Dynamics of propane in Na-Y zeolite. Applied Physics A: Materials Science and Processing, 2002, 74, s1317-s1319.	1.1	5
87	Low temperature intracage and intercage migration rates for guest atoms of varying sizes in zeolite NaY. Chemical Physics Letters, 2002, 359, 507-515.	1.2	1
88	Lithium Ion Motion in LiZr2(PO4)3. Journal of Physical Chemistry B, 2001, 105, 6785-6791.	1.2	24
89	Diffusion of hydrocarbons in confined media: Translational and rotational motion. Journal of Chemical Sciences, 2001, 113, 559-577.	0.7	4
90	Translational–orientational coupling during passage of methane through the bottleneck in zeolite A. Journal of Chemical Physics, 2001, 114, 11.	1.2	11

#	Article	IF	CITATIONS
91	A study of the condensed phases and solid–solid phase transition in toluene: A Monte Carlo investigation. Journal of Chemical Physics, 2000, 113, 8070-8079.	1.2	4
92	Diffusion anomaly from analytical formula. Journal of Chemical Physics, 2000, 112, 965-969.	1.2	10
93	Separation of multi-component mixtures by the use of the anomalous regime in the diffusivity. Molecular Physics, 2000, 98, 657-665.	0.8	9
94	Structure and Dynamics of Benzene in One-Dimensional Channels. Journal of Physical Chemistry B, 2000, 104, 11977-11986.	1.2	38
95	Types of Dependence of Self-Diffusivity on Sorbate Concentration in Parameter Space: A Two-Dimensional Lattice Gas Studyâ€. Journal of Physical Chemistry B, 2000, 104, 2607-2612.	1.2	21
96	Effect of a Distribution of Pore Dimension on Levitation Effectâ€. Journal of Physical Chemistry B, 2000, 104, 9126-9130.	1.2	14
97	Levitation effect and its relationship with the underlying potential energy landscape. Journal of Chemical Physics, 1999, 110, 5960-5968.	1.2	29
98	Dependence of the self-diffusion coefficient on the sorbate concentration: A two-dimensional lattice gas model with and without confinement. Journal of Chemical Physics, 1999, 111, 1658-1667.	1.2	30
99	Dependence of diffusion properties in zeolites Y and A: a search in the sorbate interaction parameter space. Molecular Physics, 1997, 90, 889-894.	0.8	8
100	Temperature dependence of the levitation effect Implications for separation of multicomponent mixtures. Faraday Discussions, 1997, 106, 105-118.	1.6	26
101	Conformational Analysis ofn-Butane in Zeolite NaCaA: Temperature and Concentration Dependenceâ€. Journal of Physical Chemistry B, 1997, 101, 5675-5683.	1.2	11
102	Levitation Effect and Its Dependence on Sorbate Concentrationâ€. Journal of Physical Chemistry B, 1997, 101, 8035-8037.	1.2	8
103	Estimation of Error in the Diffusion Coefficient from Molecular Dynamics Simulationsâ€. Journal of Physical Chemistry B, 1997, 101, 5437-5445.	1.2	71
104	Inverse Surface Melting in Confined Clusters: Ar13in Zeolite Lâ€. Journal of Physical Chemistry B, 1997, 101, 389-395.	1.2	7
105	Monte Carlo and molecular dynamics simulation of argon clusters andn-alkanes in the confined regions of zeolites. Bulletin of Materials Science, 1997, 20, 845-878.	0.8	10
106	A Monte Carlo Method for Estimation of Pore Volumes of Zeolites. Zeolites, 1997, 19, 51-56.	0.9	4
107	Effect of confinement in the α-cages of zeolite NaCaA on the properties of Ar13 cluster: A Monte Carlo study. Journal of Chemical Sciences, 1997, 109, 189-202.	0.7	1
108	Monte Carlo simulation of an argon cluster confined in zeolite NaCaA. Chemical Physics Letters, 1996, 252, 384-388.	1.2	3

7

#	Article	IF	CITATIONS
109	Conformation of confined alkanes: nâ€butane in zeolite Y. Journal of Chemical Physics, 1996, 105, 7223-7226.	1.2	11
110	Deviation from Arrhenius behaviour of rate of intercage diffusion in Zeolite Y ¹ . , 1996, 1, 87-92.		2
111	Diffusion behaviour of binary mixtures in restricted regions of zeolite NaY from molecular dynamics calculations. Chemical Physics Letters, 1995, 234, 16-20.	1.2	12
112	Diffusion Anomaly in Silicalite and VPI-5 from Molecular Dynamics Simulations. The Journal of Physical Chemistry, 1995, 99, 4286-4292.	2.9	66
113	A Monte Carlo study of the condensed phases of biphenyl. Molecular Physics, 1995, 84, 49-68.	0.8	7
114	Orientational glassy phases of C60 and neopentane.: A Monte Carlo study. World Scientific Series in 20th Century Chemistry, 1995, , 258-262.	0.0	0
115	Comparison of positional disorder in the liquid and glassy states of hydrocarbons: dependence of disorder on molecular shape. World Scientific Series in 20th Century Chemistry, 1995, , 263-269.	0.0	0
116	Computer Simulation of Transformations in Solids. World Scientific Series in 20th Century Chemistry, 1995, , 237-257.	0.0	0
117	Diffusion of Sorbates in Zeolites Y and A: Novel Dependence on Sorbate Size and Strength of Sorbate-Zeolite Interaction. The Journal of Physical Chemistry, 1994, 98, 6368-6376.	2.9	146
118	Comparison of positional disorder in the liquid and glassy states of hydrocarbons: Dependence of disorder on molecular shape. Molecular Physics, 1994, 81, 467-473.	0.8	1
119	Diffusion in zeolites: Anomalous dependence on sorbate diameter. Journal of Chemical Physics, 1994, 100, 4013-4016.	1.2	45
120	Sorbate Properties of Xenon in Cloverite: A Molecular Dynamics Study. Journal of Solid State Chemistry, 1994, 111, 151-156.	1.4	4
121	Anomalous behaviour of cage-to-cage diffusion of methane in zeolites A and Y. Chemical Physics Letters, 1994, 223, 363-368.	1.2	15
122	Surprising diffusion behaviour in the restricted regions of silicalite. Chemical Physics Letters, 1994, 228, 284-288.	1.2	33
123	Probing Potential Energy Surfaces in Confined Systems: Behavior of Mean-Square Displacement in Zeolites. The Journal of Physical Chemistry, 1994, 98, 9354-9359.	2.9	16
124	Effect of Sorbate-Zeolite Interaction on Cluster Lifetime and Size of Sorbates: Xe in NaY. Journal of Solid State Chemistry, 1993, 106, 184-189.	1.4	3
125	Role of molecular reorientation in the vitrification of molecular liquids: A Monte Carlo study of the liquid and glassy states of 2,2-dimethylbutane. Journal of Molecular Liquids, 1993, 57, 177-193.	2.3	0
126	Xenon in sodium Y zeolite. 2. Arrhenius relation, mechanism, and barrier height distribution for cage-to-cage diffusion. The Journal of Physical Chemistry, 1993, 97, 3849-3857.	2.9	39

Yashonath Subramanian

#	Article	IF	CITATIONS
127	Influence of non-geometrical factors on intracrystalline diffusion. Molecular Physics, 1993, 78, 1-6.	0.8	31
128	A molecular dynamics study of xenon sorbed in sodium Y zeolite. 1. Temperature and concentration dependence. The Journal of Physical Chemistry, 1992, 96, 10469-10477.	2.9	52
129	Dynamics of adsorbates in micropores of zeolites and breakdown of Arrhenius behavior. Physical Review B, 1992, 45, 10095-10098.	1.1	9
130	Molecular dynamics investigation of sorption of argon in NaCaA zeolite. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1063.	1.7	17
131	Structure-potential relationship and nature of disorder in liquids and glassy solids. Chemical Physics Letters, 1992, 189, 311-315.	1.2	10
132	Molecular dynamics simulation of clathrates: noble gases in the cages of β-hydroquinone. Chemical Physics Letters, 1992, 192, 390-394.	1.2	12
133	Structure and dynamics of polar liquids: A molecular dynamics investigation of N,N-dimethyl formamide. Chemical Physics, 1991, 155, 351-356.	0.9	18
134	Adsorption of xenon in zeolite Y: a molecular dynamics study. Chemical Physics Letters, 1991, 177, 54-58.	1.2	18
135	A molecular dynamics study of cage-to-cage migration in sodium Y zeolite: role of surface-mediated diffusion. The Journal of Physical Chemistry, 1991, 95, 5877-5881.	2.9	36
136	Localization and mobility of benzene in sodium-Y zeolite by molecular dynamics calculations. The Journal of Physical Chemistry, 1989, 93, 5016-5019.	2.9	144
137	A molecular dynamics study of methane in zeolite NaY. Chemical Physics Letters, 1988, 153, 551-556.	1.2	93
138	The siting, energetics and mobility of saturated hydrocarbons inside zeolitic cages: methane in zeolite Y. Nature, 1988, 331, 601-604.	13.7	122
139	A six-site anisotropic atom-atom potential model for the condensed phases of benzene. Molecular Physics, 1988, 64, 361-376.	0.8	61
140	New methods of probing the structure of catalysts. International Reviews in Physical Chemistry, 1988, 7, 81-87.	0.9	3
141	Advances in the characterization of catalysts. Reaction Kinetics and Catalysis Letters, 1987, 35, 249-259.	0.6	2
142	Monte Carlo simulation of the crystal to plastic crystal transition in carbon tetrachloride. Chemical Physics Letters, 1985, 119, 22-28.	1.2	16
143	Glass transition in isopentane: A Monte Carlo study. Physical Review B, 1985, 31, 3196-3198.	1.1	5
144	A Monte Carlo study of crystal structure transformations. Molecular Physics, 1985, 54, 245-251.	0.8	95

#	Article	IF	CITATIONS
145	Mean-field results of a lattice-gas model of multilayer adsorption. Chemical Physics Letters, 1984, 110, 265-269.	1.2	5
146	Plastic and glassy crystalline states of methane: A Monte Carlo simulation study. Chemical Physics Letters, 1983, 101, 524-527.	1.2	7
147	Molecularly adsorbed oxygen on metals: electron spectroscopic studies. Chemical Physics Letters, 1982, 88, 13-16.	1.2	62
148	Study of adsorbed molecules by Auger spectroscopy. Applications of Surface Science, 1982, 10, 559-566.	1.0	4
149	Charge transfer in Chevrel phases. Solid State Communications, 1981, 37, 325-327.	0.9	15