
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Design of Covalent Heptazine Frameworks with Spatially Separated Redox Centers for Highâ€Efficiency Photocatalytic Hydrogen Peroxide Production. Advanced Materials, 2022, 34, e2107480.	11.1	119
2	Molecular Design of Two-Dimensional Covalent Heptazine Frameworks for Photocatalytic Overall Water Splitting under Visible Light. Journal of Physical Chemistry Letters, 2022, 13, 3949-3956.	2.1	17
3	Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chemistry of Materials, 2022, 34, 4259-4273.	3.2	60
4	Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Advanced Materials, 2022, 34, e2110266.	11.1	136
5	Printable and Highly Stretchable Viscoelastic Conductors with Kinematically Reconstructed Conductive Pathways. Advanced Materials, 2022, 34, e2202418.	11.1	17
6	A Transparent, Highâ€Performance, and Stable Sb ₂ S ₃ Photoanode Enabled by Heterojunction Engineering with Conjugated Polycarbazole Frameworks for Unbiased Photoelectrochemical Overall Water Splitting Devices. Advanced Materials, 2022, 34, e2200723.	11.1	30
7	Forming electron traps deactivates self-assembled crystalline organic nanosheets toward photocatalytic overall water splitting. Science Bulletin, 2021, 66, 265-274.	4.3	18
8	Stable Unbiased Photoâ€Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. Advanced Materials, 2021, 33, e2008264.	11.1	74
9	Reversing Immunosuppression in Hypoxic and Immuneâ€Cold Tumors with Ultrathin Oxygen Selfâ€Supplementing Polymer Nanosheets under Near Infrared Light Irradiation. Advanced Functional Materials, 2021, 31, 2100354.	7.8	25
10	Fully Conjugated Ladder Polymers as <scp>Metalâ€Free</scp> Photocatalysts for <scp>Visibleâ€Lightâ€Driven</scp> Water Oxidation. Chinese Journal of Chemistry, 2021, 39, 1079-1084.	2.6	10
11	Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Research, 2021, 14, 3112-3125.	5.8	12
12	Selective CO ₂ â€ŧoâ€CH ₄ Photoconversion in Aqueous Solutions Catalyzed by Atomically Dispersed Copper Sites Anchored on Ultrathin Graphdiyne Oxide Nanosheets. Solar Rrl, 2021, 5, 2100200.	3.1	13
13	PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3934.	5.8	111
14	Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused π-conjugated microporous polymer for light-driven benzyl alcohol oxidation. Chinese Chemical Letters, 2020, 31, 231-234.	4.8	19
15	Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metalâ€Free Photocatalysts for Hydrogen Peroxide Production: A New Twoâ€Electron Water Oxidation Pathway. Advanced Materials, 2020, 32, e1904433.	11.1	225
16	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 16902-16909.	7.2	293
17	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 17050-17057.	1.6	66
18	Regulating Heterogeneous Catalysis of Gold Nanoparticles with Polymer Mechanochemistry. ACS Macro Letters, 2020, 9, 1192-1197.	2.3	12

#	Article	IF	CITATIONS
19	Frontispiz: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, .	1.6	0
20	Frontispiece: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, .	7.2	1
21	A Simple Molecular Design Strategy for Two-Dimensional Covalent Organic Framework Capable of Visible-Light-Driven Water Splitting. Journal of the American Chemical Society, 2020, 142, 4508-4516.	6.6	207
22	Rapid metal-free synthesis of pyridyl-functionalized conjugated microporous polymers for visible-light-driven water splitting. Polymer Chemistry, 2020, 11, 3393-3397.	1.9	31
23	A Photochemical Approach toward Highâ€Fidelity Programmable Transfer Printing. Advanced Materials Technologies, 2019, 4, 1900163.	3.0	9
24	Protonationâ€Assisted Exfoliation of Nâ€Containing 2D Conjugated Polymers. Small, 2019, 15, e1903643.	5.2	25
25	Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS Applied Materials & Interfaces, 2019, 11, 45301-45309.	4.0	47
26	Unraveling the Photocatalytic Water Dissociation Pathways on Twoâ€Dimensional Conjugated Polymers. ChemCatChem, 2019, 11, 6236-6243.	1.8	8
27	Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. Nano Letters, 2019, 19, 4060-4067.	4.5	118
28	Multilayer Polypyrrole Nanosheets with Selfâ€Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Advanced Materials, 2019, 31, e1807716.	11.1	341
29	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Zâ€6cheme Overall Water Splitting. Angewandte Chemie, 2018, 130, 3512-3516.	1.6	64
30	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Zâ€ s cheme Overall Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 3454-3458.	7.2	248
31	Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Science China Materials, 2018, 61, 915-925.	3.5	17
32	Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window. Nano Letters, 2018, 18, 2217-2225.	4.5	215
33	In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Research, 2018, 11, 2217-2228.	5.8	108
34	Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach. Inorganic Chemistry Frontiers, 2018, 5, 29-38.	3.0	15
35	A Selfâ€Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Advanced Functional Materials, 2018, 28, 1705551.	7.8	387
36	Solar Energy Conversion: 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting (Adv. Mater. 48/2018). Advanced Materials, 2018, 30, 1870369.	11.1	41

#	Article	IF	CITATIONS
37	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie, 2018, 130, 16685-16689.	1.6	28
38	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie - International Edition, 2018, 57, 16447-16451.	7.2	262
39	The Chemical History of a Bubble. Accounts of Chemical Research, 2018, 51, 2169-2178.	7.6	78
40	Highly pressure-sensitive graphene sponge fabricated by γ-ray irradiation reduction. Science China Materials, 2018, 61, 1596-1604.	3.5	6
41	Probing buckling and post-buckling deformation of hollow amorphous carbon nanospheres: In-situ experiment and theoretical analysis. Carbon, 2018, 137, 411-418.	5.4	16
42	A Fully Biodegradable Battery for Selfâ€₽owered Transient Implants. Small, 2018, 14, e1800994.	5.2	113
43	Biodegradable Batteries: A Fully Biodegradable Battery for Self-Powered Transient Implants (Small) Tj ETQq1 1	0.784314 rg	;BT_/Overlock
44	2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Advanced Materials, 2018, 30, e1801955.	11.1	211
45	A bioinspired surface coating approach for enhancing adhesion and scratch resistance in screen printed flexible circuits. Scientia Sinica Chimica, 2018, 48, 1131-1140.	0.2	0
46	Conjugated Polymer Nanosheets for Photocatalytic Overall Water Splitting. ECS Meeting Abstracts, 2018, MA2018-01, 1914-1914.	0.0	0
47	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126
48	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	5.2	70
49	Photodegradable Coordination Polymer Particles for Light-Controlled Cargo Release. ACS Omega, 2017, 2, 2536-2543.	1.6	13
50	Coordination chemistry in the design of heterogeneous photocatalysts. Chemical Society Reviews, 2017, 46, 2799-2823.	18.7	449
51	Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14180-14186.	4.0	97
52	Novel Iron/Cobalt ontaining Polypyrrole Hydrogelâ€Derived Trifunctional Electrocatalyst for Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606497.	7.8	320
53	Mechanical Activation of Platinum–Acetylide Complex for Olefin Hydrosilylation. ACS Macro Letters, 2017, 6, 1146-1150.	2.3	33
54	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding. ACS Applied Materials & Interfaces, 2017, 9, 38499-38506.	4.0	42

#	Article	IF	CITATIONS
55	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	4.7	122
56	A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction. Chinese Chemical Letters, 2017, 28, 2159-2163.	4.8	21
57	Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Advanced Materials, 2017, 29, 1702428.	11.1	302
58	Controlled Intercalation and Chemical Exfoliation of Layered Metal–Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 2017, 139, 9136-9139.	6.6	369
59	Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Research, 2017, 10, 3629-3637.	5.8	42
60	Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. ChemNanoMat, 2017, 3, 22-26.	1.5	27
61	Carbon Nanotubes Loaded on Graphene Microfolds as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 4520-4528.	1.8	9
62	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie, 2016, 128, 10026-10030.	1.6	75
63	A Metalâ€Amino Acid Complexâ€Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc–Air Batteries. Small, 2016, 12, 5414-5421.	5.2	48
64	Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit. Physical Review Letters, 2016, 116, 016602.	2.9	220
65	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie - International Edition, 2016, 55, 9872-9876.	7.2	343
66	Large-deformation and high-strength amorphous porous carbon nanospheres. Scientific Reports, 2016, 6, 24187.	1.6	42
67	A Highly Efficient Metalâ€Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Advanced Materials, 2016, 28, 4606-4613.	11.1	216
68	Cu/TiO ₂ octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures. Inorganic Chemistry Frontiers, 2016, 3, 104-110.	3.0	43
69	Recent progress in transient electronics. Science in China Series G: Physics, Mechanics and Astronomy, 2016, 46, 044605.	0.2	4
70	Materials and applications of flexible metamaterials and plasmonics. Scientia Sinica: Physica, Mechanica Et Astronomica, 2016, 46, 044604.	0.2	1
71	Sonochemical synthesis of highly photoluminescent carbon nanodots. RSC Advances, 2014, 4, 52230-52234.	1.7	26
72	Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nature Communications, 2014, 5, 5162.	5.8	315

#	Article	IF	CITATIONS
73	CHAPTER 4. Synthesis and Applications of Water-Soluble Fluorescent Silver Nanoclusters. RSC Smart Materials, 2014, , 80-99.	0.1	1
74	Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries. Advanced Materials, 2014, 26, 3879-3884.	11.1	263
75	Hollow Metal–Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 18163-18171.	4.0	159
76	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.	3.3	197
77	Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42, 2555-2567.	18.7	893
78	Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics. Advanced Functional Materials, 2013, 23, 3299-3306.	7.8	199
79	Shapeâ€Memory Polymers: Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics (Adv. Funct.) Tj	etq _q 1 1 7.89	L 0.784314 rgE
80	Porous Carbon Nanostructures: Porous Carbon Spheres from Energetic Carbon Precursors using Ultrasonic Spray Pyrolysis (Adv. Mater. 45/2012). Advanced Materials, 2012, 24, 6114-6114.	11.1	2
81	Porous Carbon Spheres from Energetic Carbon Precursors using Ultrasonic Spray Pyrolysis. Advanced Materials, 2012, 24, 6028-6033.	11.1	60
82	Sonochemical Preparation of Functionalized Graphenes. Journal of the American Chemical Society, 2011, 133, 9148-9151.	6.6	151
83	Carbon Microspheres as Supercapacitors. Journal of Physical Chemistry C, 2011, 115, 20481-20486.	1.5	71
84	Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe. Ultrasonics Sonochemistry, 2011, 18, 842-846.	3.8	141
85	Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters. ACS Nano, 2010, 4, 3209-3214.	7.3	358
86	Waterâ€Soluble Fluorescent Silver Nanoclusters. Advanced Materials, 2010, 22, 1078-1082.	11.1	444
87	Temperature Inhomogeneity during Multibubble Sonoluminescence. Angewandte Chemie - International Edition, 2010, 49, 1079-1082.	7.2	41
88	Molecular Emission and Temperature Measurements from Single-Bubble Sonoluminescence. Physical Review Letters, 2010, 104, 244301.	2.9	38
89	Spatial Separation of Cavitating Bubble Populations: The Nanodroplet Injection Model. Journal of the American Chemical Society, 2009, 131, 6060-6061.	6.6	97
90	Facile fabrication of hybrid nanoparticles surface grafted with multiâ€responsive polymer brushes via block copolymer micellization and selfâ€catalyzed core gelation. Journal of Polymer Science Part A, 2008, 46, 2379-2389.	2.5	31

#	Article	IF	CITATIONS
91	Thermosensitive Unimolecular Micelles Surface-Decorated with Gold Nanoparticles of Tunable Spatial Distribution. Chemistry of Materials, 2007, 19, 2489-2494.	3.2	65
92	Single-Step in Situ Preparation of Polymer-Grafted Multi-Walled Carbon Nanotube Composites under60Co Î ³ -Ray Irradiation. Chemistry of Materials, 2006, 18, 2929-2934.	3.2	82
93	Polymerization of Anionic Wormlike Micelles. Langmuir, 2006, 22, 949-955.	1.6	39
94	In-Situ Formation of Silver Nanoparticles with Tunable Spatial Distribution at the Poly(N-isopropylacrylamide) Corona of Unimolecular Micelles. Macromolecules, 2006, 39, 8451-8455.	2.2	98
95	Stabilization of Catanionic Vesicles via Polymerization. Journal of Physical Chemistry B, 2006, 110, 16309-16317.	1.2	16