Jung Min Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968645/publications.pdf

Version: 2024-02-01

44 1,292 20 35 g-index

56 56 56 1287

56 56 56 1287 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Development of Heteroarene-Fused Quinones As Rapidly Dissoluble and Stable Biosensors. ECS Meeting Abstracts, 2022, MA2022-01, 2238-2238.	0.0	1
2	Dicationic Heteroaryl Pyridinium As a Highly Stable, Soluble, and Crossover-Resistant Anolyte for Nonaqueous Redox Flow Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 2031-2031.	0.0	0
3	<scp>Palladiumâ€catalyzed</scp> Aerobic Benzannulation of Pyrazoles with Alkynes. Bulletin of the Korean Chemical Society, 2021, 42, 489-491.	1.0	9
4	Interference-Free Duplex Detection of Total and Active Enzyme Concentrations at a Single Working Electrode. ACS Sensors, 2021, 6, 1305-1311.	4.0	6
5	Synthesis of Bidentate Nitrogen Ligands by Rh-Catalyzed C–H Annulation and Their Application to Pd-Catalyzed Aerobic C–H Alkenylation. Organic Letters, 2021, 23, 3657-3662.	2.4	24
6	Palladium-Catalyzed C–H Benzannulation of Functionalized Furans and Pyrroles with Alkynes. Synthesis, 2021, 53, 3001-3010.	1.2	3
7	Pdâ€Catalyzed Cyclization of Alkynyl Norbornene Derivatives for the Synthesis of Benzofused Heteroarenes. Advanced Synthesis and Catalysis, 2021, 363, 4883-4888.	2.1	9
8	Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters, 2021, 6, 3390-3397.	8.8	21
9	Sterically controlled Câ€"H alkenylation of pyrroles and thiophenes. Chemical Communications, 2021, 57, 11791-11794.	2.2	10
10	Di(Thioether Sulfonate)â€Substituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Advanced Healthcare Materials, 2021, , 2101819.	3.9	3
11	Transition-Metal-Catalyzed Divergent C–H Functionalization of Five-Membered Heteroarenes. Accounts of Chemical Research, 2021, 54, 4518-4529.	7.6	32
12	Pd-Catalyzed Câ€"H Annulation of Five-Membered Heteroaryl Halides with Norbornene Derivatives. ACS Catalysis, 2020, 10, 1792-1798.	5.5	16
13	Transition-metal-catalyzed C–H functionalization of pyrazoles. Organic and Biomolecular Chemistry, 2020, 18, 6192-6210.	1.5	35
14	Divergent Strategies for the π-Extension of Heteroaryl Halides Using Norbornadiene as an Acetylene Synthon. Organic Letters, 2020, 22, 9670-9676.	2.4	12
15	Enantioselective total synthesis of (+)-ieodomycin A, (+)-ieodomycin B, and their three stereoisomers. Organic and Biomolecular Chemistry, 2020, 18, 9227-9230.	1.5	2
16	Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 2122-2129.	8.8	31
17	Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C–H Annulation. Organic Letters, 2020, 22, 1280-1285.	2.4	23
18	Regio- and Stereoselective Synthesis of Thiazole-Containing Triarylethylenes by Hydroarylation of Alkynes. Journal of Organic Chemistry, 2019, 84, 12913-12924.	1.7	23

#	Article	IF	CITATIONS
19	Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles. Analytical Chemistry, 2019, 91, 4680-4686.	3.2	8
20	Synthesis and Characterization of DPP-Based Conjugated Polymers via Dehydrogenative Direct Alkenylation Polycondensation. Macromolecular Research, 2019, 27, 115-118.	1.0	14
21	Divergent Palladiumâ€Catalyzed Crossâ€Coupling of Nitropyrazoles with Terminal Alkynes. European Journal of Organic Chemistry, 2018, 2018, 2645-2650.	1.2	18
22	Câ^'H Alkenylation of Pyrroles by Electronically Matching Ligand Control. Chemistry - an Asian Journal, 2018, 13, 2418-2422.	1.7	14
23	Regioselective C–H alkenylation of imidazoles and its application to the synthesis of unsymmetrically substituted benzimidazoles. Chemical Communications, 2018, 54, 6879-6882.	2.2	17
24	Synthesis of Fluorescent Indazoles by Palladium-Catalyzed Benzannulation of Pyrazoles with Alkynes. Organic Letters, 2017, 19, 1450-1453.	2.4	45
25	Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing. ACS Sensors, 2017, 2, 1240-1246.	4.0	25
26	Ligandâ€controlled Regiodivergent Câ^'H Alkenylation of Pyrazoles and its Application to the Synthesis of Indazoles. Angewandte Chemie, 2017, 129, 16480-16484.	1.6	32
27	Ligandâ€controlled Regiodivergent Câ^'H Alkenylation of Pyrazoles and its Application to the Synthesis of Indazoles. Angewandte Chemie - International Edition, 2017, 56, 16262-16266.	7.2	48
28	Catalytic Câ€2 Allylation of Indoles by Electronic Modulation of the Indole Ring and its Application to the Synthesis of Functionalized Carbazoles. Advanced Synthesis and Catalysis, 2016, 358, 3458-3470.	2.1	28
29	Direct C–H Alkenylation of Functionalized Pyrazoles. Journal of Organic Chemistry, 2016, 81, 689-698.	1.7	49
30	Electronically Matching Câ^'H Alkylation Strategies for the Synthesis of αâ€Heteroaryl Acetic Acid Derivatives. Asian Journal of Organic Chemistry, 2015, 4, 1386-1391.	1.3	18
31	Synthesis of βâ€∢rifluoromethylated Ketones from Propargylic Alcohols by Visible Light Photoredox Catalysis. European Journal of Organic Chemistry, 2015, 2015, 4093-4097.	1.2	35
32	Rhodium-catalyzed tandem addition–cyclization of alkynylimines. Tetrahedron, 2015, 71, 5910-5917.	1.0	15
33	Catalytic C–H Allylation and Benzylation of Pyrazoles. Journal of Organic Chemistry, 2015, 80, 690-697.	1.7	35
34	Preparation of 2-Aminopyridoimidazoles and 2-Aminobenzimidazoles via Phosphorus Oxychloride-Mediated Cyclization of Aminoureas. Journal of Organic Chemistry, 2014, 79, 3688-3695.	1.7	9
35	C-H Arylation of Nitroimidazoles and Nitropyrazoles Guided by the Electronic Effect of the Nitro Group. Bulletin of the Korean Chemical Society, 2014, 35, 3009-3014.	1.0	19
36	C–H Bonds as Ubiquitous Functionality: Preparation of Multiple Regioisomers of Arylated 1,2,4-Triazoles via C–H Arylation. Journal of Organic Chemistry, 2013, 78, 738-743.	1.7	25

#	Article	IF	CITATIONS
37	C–H Arylation of Pyridines: High Regioselectivity as a Consequence of the Electronic Character of C–H Bonds and Heteroarene Ring. Journal of the American Chemical Society, 2011, 133, 16338-16341.	6.6	140
38	Concise Synthesis of the <i>Erythrina</i> Alkaloid 3-Demethoxyerythratidinone via Combined Rhodium Catalysis. Organic Letters, 2010, 12, 5704-5707.	2.4	36
39	Câ^'H Bonds as Ubiquitous Functionality: A General Approach to Complex Arylated Imidazoles via Regioselective Sequential Arylation of All Three Câ^'H Bonds and Regioselective $\langle i \rangle N \langle i \rangle$ -Alkylation Enabled by SEM-Group Transposition. Journal of Organic Chemistry, 2010, 75, 4911-4920.	1.7	144
40	Tandem Cyclization of Alkynes via Rhodium Alkynyl and Alkenylidene Catalysis. Journal of the American Chemical Society, 2006, 128, 14818-14819.	6.6	53
41	Synthesis and evaluation of lasonolide A analogues. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1905-1908.	1.0	23
42	Lasonolide A:Â Structural Revision and Total Synthesis. Journal of Organic Chemistry, 2003, 68, 8080-8087.	1.7	86
43	Lasonolide A:  Structural Revision and Synthesis of the Unnatural (â^')-Enantiomer. Journal of the American Chemical Society, 2002, 124, 384-385.	6.6	77
44	Synthesis of (+)-Lasonolide A: (â^')-Lasonolide A is the biologically active enantiomer. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3519-3520.	1.0	19