
Masanao Naya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of 18F-FDG PET to evaluate the cardiocerebral interaction. Journal of Nuclear Cardiology, 2022, 29, 489-491.	2.1	0
2	Prognostic value of modified coronary flow capacity by 13N-ammonia myocardial perfusion positron emission tomography in patients without obstructive coronary arteries. Journal of Cardiology, 2022, 79, 247-256.	1.9	8
3	Loeys-Dietz Cardiomyopathy? Long-term Follow-up After Onset of Acute Decompensated Heart Failure. Canadian Journal of Cardiology, 2022, 38, 389-391.	1.7	3
4	Multicenter Registry in the Japanese Cardiac Sarcoidosis Prognostic (J-CASP) Study. Annals of Nuclear Cardiology, 2022, 8, 42-50.	0.2	1
5	The rate of myocardial perfusion recovery after steroid therapy and its implication for cardiac events in cardiac sarcoidosis and primarily preserved left ventricular ejection fraction. Journal of Nuclear Cardiology, 2021, 28, 1745-1756.	2.1	9
6	18F-FMISO PET/CT detects hypoxic lesions of cardiac and extra-cardiac involvement in patients with sarcoidosis. Journal of Nuclear Cardiology, 2021, 28, 2141-2148.	2.1	23
7	Prognostic value of phase analysis on gated single photon emission computed tomography in patients with cardiac sarcoidosis. Journal of Nuclear Cardiology, 2021, 28, 128-136.	2.1	9
8	Effects of ligation of a coronary artery fistula on coronary blood flow. Journal of Nuclear Cardiology, 2021, 28, 354-358.	2.1	3
9	Elevated serum endothelin-1 is an independent predictor of coronary microvascular dysfunction in non-obstructive territories in patients with coronary artery disease. Heart and Vessels, 2021, 36, 917-923.	1.2	11
10	Texture analysis of delayed contrast-enhanced computed tomography to diagnose cardiac sarcoidosis. Japanese Journal of Radiology, 2021, 39, 442-450.	2.4	7
11	Differential diagnosis of cardiac disease with ¹⁸ F-FDC accumulation. The Japanese Journal of Sarcoidosis and Other Granulomatous Disorders, 2021, 41, 39-44.	0.1	0
12	Anomalous origin of the coronary artery coursing between the great vessels presenting with a cardiovascular event (J-CONOMALY Registry). European Heart Journal Cardiovascular Imaging, 2020, 21, 222-230.	1.2	11
13	Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET. Journal of Nuclear Cardiology, 2020, 27, 1118-1125.	2.1	7
14	Viability assessment by 18F-FDG PET in a patient with a large left ventricular aneurysm and obstructive coronary artery disease. Journal of Nuclear Cardiology, 2020, 27, 326-329.	2.1	1
15	18F-FDG uptake of the right ventricle is an important predictor of histopathologic diagnosis by endomyocardial biopsy in patients with cardiac sarcoidosis. Journal of Nuclear Cardiology, 2020, 27, 2135-2143.	2.1	15
16	Improved regional myocardial blood flow and flow reserve after coronary revascularization as assessed by serial 15O-water positron emission tomography/computed tomography. European Heart Journal Cardiovascular Imaging, 2020, 21, 36-46.	1.2	15
17	Validation of regional myocardial blood flow quantification using three-dimensional PET with rubidium-82: repeatability and comparison with two-dimensional PET data acquisition. Nuclear Medicine Communications, 2020, 41, 768-775.	1.1	1
18	Recent advances in cardiac positron emission tomography for quantitative perfusion analyses and molecular imaging. Annals of Nuclear Medicine, 2020, 34, 697-706.	2.2	11

Masanao Naya

#	Article	IF	CITATIONS
19	What is this image? 2020: Image 6 result. Journal of Nuclear Cardiology, 2020, 27, 719-722.	2.1	Ο
20	Nuclear Medicine Image Interpretation Progress in the Assessment of Cardiac Sarcoidosis: July 2019 ASNC/JSNC Joint Session. Annals of Nuclear Cardiology, 2020, 6, 49-52.	0.2	0
21	The role of multimodality imaging in takotsubo cardiomyopathy. Journal of Nuclear Cardiology, 2019, 26, 1602-1616.	2.1	15
22	¹⁵ O-labeled Water is the Best Myocardial Blood Flow Tracer for Precise MBF Quantification. Annals of Nuclear Cardiology, 2019, 5, 69-72.	0.2	5
23	Effects of coronary revascularization on global coronary flow reserve in stable coronary artery disease. Cardiovascular Research, 2019, 115, 119-129.	3.8	22
24	Usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography angiography in a patient with blood culture-negative prosthetic valve endocarditis complicated with perivalvular abscess: a case report. European Heart Journal - Case Reports, 2019, 3, 1-5.	0.6	2
25	POEMS Syndrome Showing Left Ventricular Dysfunction and Extracellular Edema Assessed by Cardiac Magnetic Resonance Imaging. Internal Medicine, 2019, 58, 2539-2543.	0.7	8
26	Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis—2018 update: Japanese Society of Nuclear Cardiology recommendations. Journal of Nuclear Cardiology, 2019, 26, 1414-1433.	2.1	57
27	Progressive left ventricular dysfunction and myocardial fibrosis in Duchenne and Becker muscular dystrophy: a longitudinal cardiovascular magnetic resonance study. Pediatric Cardiology, 2019, 40, 384-392.	1.3	20
28	Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1240-1247.	6.4	36
29	The role of nuclear medicine in assessments of cardiac dyssynchrony. Journal of Nuclear Cardiology, 2018, 25, 1980-1987.	2.1	7
30	Which is the proper reference tissue for measuring the change in FDG PET metabolic volume of cardiac sarcoidosis before and after steroid therapy?. EJNMMI Research, 2018, 8, 94.	2.5	15
31	18F-FDG PET findings of pericardial lymphangiohemangioma. Journal of Nuclear Cardiology, 2017, 24, 1107-1109.	2.1	1
32	PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease. EJNMMI Research, 2017, 7, 52.	2.5	9
33	Feasibility of PET for the management of coronary artery disease: Comparison between CFR and FFR. Journal of Cardiology, 2017, 70, 135-140.	1.9	19
34	Regional interaction between myocardial sympathetic denervation, contractile dysfunction, and fibrosis in heart failure with preserved ejection fraction: 11C-hydroxyephedrine PET study. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1897-1905.	6.4	22
35	Impaired Myocardial Sympathetic Innervation Is Associated with Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction: ¹¹ C-Hydroxyephedrine PET Study. Journal of Nuclear Medicine, 2017, 58, 784-790.	5.0	32
36	Feasibility of Quantifying Myocardial Blood Flow with a Shorter Acquisition Time Using ¹⁵ O-H ₂ O PET. Annals of Nuclear Cardiology, 2016, 2, 30-37.	0.2	6

Masanao Naya

#	Article	IF	CITATIONS
37	Incidental focal myocardial 18F-FDG uptake indicating asymptomatic coronary artery disease. Journal of Nuclear Cardiology, 2016, 23, 596-598.	2.1	7
38	Administration of unfractionated heparin with prolonged fasting could reduce physiological 18F-fluorodeoxyglucose uptake in the heart. Acta Radiologica, 2016, 57, 661-668.	1.1	40
39	Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with ¹⁵ oâ€water PET. Journal of Magnetic Resonance Imaging, 2015, 42, 754-762.	3.4	29
40	Global Coronary Flow Reserve Is Associated With Adverse Cardiovascular Events Independently of Luminal Angiographic Severity and Modifies the Effect of Early Revascularization. Circulation, 2015, 131, 19-27.	1.6	410
41	Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H2O PET. Annals of Nuclear Medicine, 2015, 29, 15-20.	2.2	11
42	Response to Letter Regarding Article, "Effects of Sex on Coronary Microvascular Dysfunction and Cardiac Outcomes― Circulation, 2015, 131, e376.	1.6	3
43	Comparison and Prognostic Validation of Multiple Methods of Quantification of Myocardial Blood Flow with ⁸² Rb PET. Journal of Nuclear Medicine, 2014, 55, 1952-1958.	5.0	82
44	Effects of Sex on Coronary Microvascular Dysfunction and Cardiac Outcomes. Circulation, 2014, 129, 2518-2527.	1.6	467
45	Cardiac Positron Emission Tomography Enhances Prognostic Assessments of Patients With Suspected Cardiac Sarcoidosis. Journal of the American College of Cardiology, 2014, 63, 329-336.	2.8	572
46	Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 150-H2O PET. European Radiology, 2014, 24, 1547-1556.	4.5	87
47	Preserved Coronary Flow Reserve Effectively Excludes High-Risk Coronary Artery Disease on Angiography. Journal of Nuclear Medicine, 2014, 55, 248-255.	5.0	216
48	Coronary Flow Reserve Estimated by Positron Emission Tomography to Diagnose Significant Coronary Artery Disease and Predict Cardiac Events. Circulation Journal, 2014, 79, 15-23.	1.6	28
49	Imaging characteristics of cardiac dominant diffuse large B-cell lymphoma demonstrated with MDCT and PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1337-1344.	6.4	40
50	Interrelation between myocardial oxidative metabolism and diastolic function in patients undergoing surgical ventricular reconstruction. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 349-355.	6.4	2
51	Prognostic Interplay of Coronary Artery Calcification and Underlying Vascular Dysfunction in Patients With Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 61, 2098-2106.	2.8	104
52	Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. Journal of Nuclear Cardiology, 2012, 19, 763-774.	2.1	31
53	Quantitative Relationship Between the Extent and Morphology of Coronary Atherosclerotic Plaque and Downstream Myocardial Perfusion. Journal of the American College of Cardiology, 2011, 58, 1807-1816.	2.8	97
54	Long-term smoking causes more advanced coronary endothelial dysfunction in middle-aged smokers compared to young smokers. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 491-498.	6.4	28

MASANAO NAYA

#	Article	IF	CITATIONS
55	Improved Cardiac Risk Assessment With Noninvasive Measures of Coronary Flow Reserve. Circulation, 2011, 124, 2215-2224.	1.6	710
56	Myocardial oxidative metabolism is increased due to haemodynamic overload in patients with aortic valve stenosis: assessment using 11C-acetate positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 2242-2248.	6.4	6
57	Myocardial β-Adrenergic Receptor Density Assessed by ¹¹ C-CGP12177 PET Predicts Improvement of Cardiac Function After Carvedilol Treatment in Patients with Idiopathic Dilated Cardiomyopathy. Journal of Nuclear Medicine, 2009, 50, 220-225.	5.0	48
58	Repeatability of Rest and Hyperemic Myocardial Blood Flow Measurements with ⁸² Rb Dynamic PET. Journal of Nuclear Medicine, 2009, 50, 68-71.	5.0	92
59	Plasma Interleukin-6 and Tumor Necrosis FactorALPHA. Can Predict Coronary Endothelial Dysfunction in Hypertensive Patients. Hypertension Research, 2007, 30, 541-548.	2.7	83
60	Elevated Plasma Plasminogen Activator Inhibitor Type-1 is an Independent Predictor of Coronary Microvascular Dysfunction in Hypertension. Circulation Journal, 2007, 71, 348-353.	1.6	21
61	Olmesartan, But Not Amlodipine, Improves Endothelium-Dependent Coronary Dilation in Hypertensive Patients. Journal of the American College of Cardiology, 2007, 50, 1144-1149.	2.8	103
62	Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 1150-1156.	6.4	40