Emmanuelle Meudec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968411/publications.pdf Version: 2024-02-01

EMMANUELLE MEUDEC

#	Article	IF	CITATIONS
1	Polyphenol Composition and Antioxidant Activity of Tapirira guianensis Aubl. (Anarcadiaceae) Leaves. Plants, 2022, 11, 326.	3.5	2
2	Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules, 2022, 27, 1359.	3.8	8
3	Improved Analysis of Isomeric Polyphenol Dimers Using the 4th Dimension of Trapped Ion Mobility Spectrometry—Mass Spectrometry. Molecules, 2022, 27, 4176.	3.8	2
4	Highâ€resolution mass spectrometry (HRMS): Focus on the <i>m/z</i> values estimated by the Savitzky–Golay first derivative. Rapid Communications in Mass Spectrometry, 2021, 35, e9036.	1.5	5
5	Multimethod Approach for Extensive Characterization of Gallnut Tannin Extracts. Journal of Agricultural and Food Chemistry, 2020, 68, 13426-13438.	5.2	13
6	The impact of distillation process on the chemical composition and potential prebiotic activity of different oligosaccharidic fractions extracted from grape seeds. Food Chemistry, 2019, 285, 423-430.	8.2	17
7	Fast Discrimination of Chocolate Quality Based on Average-Mass-Spectra Fingerprints of Cocoa Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 2723-2731.	5.2	20
8	Polyphenol Characterization in Red Beverages of Carapa procera (D.C.) Leaf Extracts. Beverages, 2019, 5, 68.	2.8	6
9	Quantification of hydroxycinnamic derivatives in wines by UHPLC-MRM-MS. Analytical and Bioanalytical Chemistry, 2018, 410, 3483-3490.	3.7	16
10	Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 2018, 259, 207-212.	8.2	18
11	The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?. Food Chemistry, 2018, 241, 206-214.	8.2	64
12	New flavanol O-glycosides in grape and wine. Food Chemistry, 2018, 266, 441-448.	8.2	30
13	Targeted filtering reduces the complexity of UHPLC-Orbitrap-HRMS data to decipher polyphenol polymerization. Food Chemistry, 2017, 227, 255-263.	8.2	28
14	The Hidden Face of Wine Polyphenol Polymerization Highlighted by Highâ€Resolution Mass Spectrometry. ChemistryOpen, 2017, 6, 336-339.	1.9	24
15	Cultivar Diversity of Grape Skin Polyphenol Composition and Changes in Response to Drought Investigated by LC-MS Based Metabolomics. Frontiers in Plant Science, 2017, 8, 1826.	3.6	77
16	A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization. Molecules, 2016, 21, 1409.	3.8	23
17	p-Hydroxyphenyl-pyranoanthocyanins: An Experimental and Theoretical Investigation of Their Acid—Base Properties and Molecular Interactions. International Journal of Molecular Sciences, 2016, 17, 1842.	4.1	26
18	Synthesis, Identification, and Structure Elucidation of Adducts Formed by Reactions of Hydroxycinnamic Acids with Glutathione or Cysteinylglycine. Journal of Natural Products, 2016, 79, 2211-2222.	3.0	16

Emmanuelle Meudec

#	Article	IF	CITATIONS
19	Two shikimate dehydrogenases, <i>VvSDH3</i> and <i>VvSDH4</i> , are involved in gallic acid biosynthesis in grapevine. Journal of Experimental Botany, 2016, 67, 3537-3550.	4.8	61
20	A comprehensive investigation of guaiacyl-pyranoanthocyanin synthesis by one-/two-dimensional NMR and UPLC–DAD–ESI–MSn. Food Chemistry, 2016, 199, 902-910.	8.2	20
21	In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 2016, 88, 284-292.	6.2	93
22	A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines. Molecules, 2015, 20, 7890-7914.	3.8	88
23	Straightforward Method To Quantify GSH, GSSG, GRP, and Hydroxycinnamic Acids in Wines by UPLC-MRM-MS. Journal of Agricultural and Food Chemistry, 2015, 63, 142-149.	5.2	32
24	Complex Carbohydrates of Red Wine: Characterization of the Extreme Diversity of Neutral Oligosaccharides by ESI-MS. Journal of Agricultural and Food Chemistry, 2015, 63, 671-682.	5.2	18
25	Moderate consumption of wine, through both its phenolic compounds and alcohol content, promotes hydroxytyrosol endogenous generation in humans. A randomized controlled trial. Molecular Nutrition and Food Research, 2015, 59, 1213-1216.	3.3	32
26	Effect of reverse osmosis concentration coupled with drying processes on polyphenols and antioxidant activity obtained from Tectona grandis leaf aqueous extracts. Journal of Applied Research on Medicinal and Aromatic Plants, 2015, 2, 54-59.	1.5	5
27	Polyphenolic compounds in date fruit seed (<i>Phoenix dactylifera</i>): characterisation and quantification by using <scp>UPLCâ€ÐADâ€ESIâ€MS</scp> . Journal of the Science of Food and Agriculture, 2014, 94, 1084-1089.	3.5	95
28	Qualitative and Semiâ€quantitative Analysis of Phenolics in <i>Eucalyptus globulus</i> Leaves by Highâ€performance Liquid Chromatography Coupled with Diode Array Detection and Electrospray Ionisation Mass Spectrometry. Phytochemical Analysis, 2013, 24, 162-170.	2.4	54
29	Silencing of the chalcone synthase gene in <i><scp>C</scp>asuarina glauca</i> highlights the important role of flavonoids during nodulation. New Phytologist, 2013, 199, 1012-1021.	7.3	64
30	Phenolic acid and flavonol water extracts of Delonix regia red flowers. Industrial Crops and Products, 2012, 37, 303-310.	5.2	24
31	Characterisation of genuine and derived cranberry proanthocyanidins by LC–ESI-MS. Food Chemistry, 2011, 128, 802-810.	8.2	46
32	Isolation of Carignan and Merlot red wine oligosaccharides and their characterization by ESI-MS. Carbohydrate Polymers, 2010, 79, 747-754.	10.2	45
33	Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology, 2010, 91, 2080-2091.	3.2	165
34	Analysis by High-Performance Liquid Chromatography Diode Array Detection Mass Spectrometry of Phenolic Compounds in Fruit of Eucalyptus globulus Cultivated in Algeria. Journal of Agricultural and Food Chemistry, 2010, 58, 12615-12624.	5.2	68
35	A Novel Cation-Dependent <i>O-</i> Methyltransferase Involved in Anthocyanin Methylation in Grapevine Â. Plant Physiology, 2009, 150, 2057-2070.	4.8	151
36	New Insights into γ-Aminobutyric Acid Catabolism: Evidence for γ-Hydroxybutyric Acid and Polyhydroxybutyrate Synthesis in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2009, 75, 4231-4239.	3.1	66

Emmanuelle Meudec

#	Article	IF	CITATIONS
37	Characterization, stoichiometry, and stability of salivary protein–tannin complexes by ESI-MS and ESI-MS/MS. Analytical and Bioanalytical Chemistry, 2009, 395, 2535-2545.	3.7	49
38	Characterisation of highly polymerised prodelphinidins from skin and flesh of four cashew apple (Anacardium occidentale L.) genotypes. Food Chemistry, 2009, 114, 989-995.	8.2	32
39	Seasonal changes in optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus petraea): towards signatures of phenological stage. Functional Plant Biology, 2009, 36, 732.	2.1	38
40	Direct mass spectrometry approaches to characterize polyphenol composition of complex samples. Phytochemistry, 2008, 69, 3131-3138.	2.9	70
41	New Compounds Obtained by Evolution and Oxidation of Malvidin 3- <i>O</i> -Glucoside in Ethanolic Medium. Journal of Agricultural and Food Chemistry, 2008, 56, 4584-4591.	5.2	18
42	Anthocyanin Characterization of Pilot Plant Water Extracts of Delonix regia Flowers. Molecules, 2008, 13, 1238-1245.	3.8	21
43	Mass Spectrometric Evidence for the Existence of Oligomeric Anthocyanins in Grape Skins. Journal of Agricultural and Food Chemistry, 2004, 52, 7144-7151.	5.2	105
44	Fractionation of Grape Anthocyanin Classes Using Multilayer Coil Countercurrent Chromatography with Step Gradient Elution. Journal of Agricultural and Food Chemistry, 2004, 52, 713-719.	5.2	49
45	A dehydrotrimer of ferulic acid from maize bran. Phytochemistry, 2003, 63, 899-903.	2.9	132
46	Reactions of Anthocyanins and Tannins in Model Solutions. Journal of Agricultural and Food Chemistry, 2003, 51, 7951-7961.	5.2	139
47	Characterization of a Colorless Anthocyaninâ~'Flavan-3-ol Dimer Containing Both Carbonâ 'Carbon and Ether Interflavanoid Linkages by NMR and Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2003, 51, 3592-3597.	5.2	96