
Paul W Pare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968369/publications.pdf Version: 2024-02-01

ΔΛΙΙΙ \λ/ ΔΛDE

#	Article	IF	CITATIONS
1	Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4927-4932.	7.1	1,415
2	Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiology, 2004, 134, 1017-1026.	4.8	1,165
3	Herbivore-infested plants selectively attract parasitoids. Nature, 1998, 393, 570-573.	27.8	1,124
4	Plant Volatiles as a Defense against Insect Herbivores. Plant Physiology, 1999, 121, 325-332.	4.8	1,030
5	Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria Â. Plant Physiology, 2008, 148, 1547-1556.	4.8	823
6	Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter <i>HKT1</i> . Molecular Plant-Microbe Interactions, 2008, 21, 737-744.	2.6	462
7	Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 2007, 226, 839-851.	3.2	421
8	De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiology, 1997, 114, 1161-1167.	4.8	415
9	GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 2006, 67, 2262-2268.	2.9	349
10	A soil bacterium regulates plant acquisition of iron via deficiencyâ€inducible mechanisms. Plant Journal, 2009, 58, 568-577.	5.7	319
11	Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels <i>in planta</i> . Plant Journal, 2008, 56, 264-273.	5.7	305
12	An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14801-14806.	7.1	254
13	Induced synthesis of plant volatiles. Nature, 1997, 385, 30-31.	27.8	218
14	The rhizobacterial elicitor acetoin induces systemic resistance in <i>Arabidopsis thaliana</i> . Communicative and Integrative Biology, 2010, 3, 130-138.	1.4	217
15	C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry, 2002, 61, 545-554.	2.9	215
16	Choline and Osmotic-Stress Tolerance Induced in <i>Arabidopsis</i> by the Soil Microbe <i>Bacillus subtilis</i> (GB03). Molecular Plant-Microbe Interactions, 2010, 23, 1097-1104.	2.6	208
17	Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 2002, 5, 764-774.	6.4	193
18	(Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta, 2005, 220, 900-909.	3.2	155

#	Article	IF	CITATIONS
19	Concerted biosynthesis of an insect elicitor of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13971-13975.	7.1	152
20	Exogenous methyl jasmonate induces volatile emissions in cotton plants. Journal of Chemical Ecology, 2001, 27, 679-695.	1.8	150
21	Flavonoid Oxidation by the Radical Generator AIBN:Â A Unified Mechanism for Quercetin Radical Scavenging. Journal of Agricultural and Food Chemistry, 2002, 50, 4357-4363.	5.2	145
22	Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Frontiers in Plant Science, 2014, 5, 525.	3.6	144
23	A Plasma Membrane Protein from Zea mays Binds with the Herbivore Elicitor Volicitin. Plant Cell, 2004, 16, 523-532.	6.6	134
24	Soil Bacteria Elevate Essential Oil Accumulation and Emissions in Sweet Basil. Journal of Agricultural and Food Chemistry, 2009, 57, 653-657.	5.2	131
25	Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium <i>Bacillus subtilis</i> (GB03). Plant Signaling and Behavior, 2009, 4, 948-953.	2.4	127
26	Elicitors and priming agents initiate plant defense responses. Photosynthesis Research, 2005, 85, 149-159.	2.9	120
27	In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 2020, 126, 104046.	7.0	98
28	Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant and Soil, 2016, 407, 217-230.	3.7	96
29	Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry, 1998, 47, 521-526.	2.9	91
30	A stressâ€inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in <i>Arabidopsis</i> . Plant, Cell and Environment, 2010, 33, 1383-1392.	5.7	80
31	Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. Journal of Chemical Ecology, 2002, 28, 1733-1747.	1.8	78
32	Plant Volatile Signals in Response to Herbivore Feeding. Florida Entomologist, 1996, 79, 93.	0.5	76
33	Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling. Frontiers in Plant Science, 2016, 7, 458.	3.6	74
34	The piercing-sucking herbivoresLygus hesperusandNezara viridulainduce volatile emissions in plants. Archives of Insect Biochemistry and Physiology, 2005, 58, 84-96.	1.5	65
35	Bioactive Hydroperoxyl Cembranoids from the Red Sea Soft Coral Sarcophyton glaucum. Marine Drugs, 2012, 10, 209-222.	4.6	55
36	In Vitro Flavon-3-ol Oxidation Mediated by a B Ring Hydroxylation Pattern. Chemical Research in Toxicology, 2004, 17, 795-804.	3.3	53

#	Article	IF	CITATIONS
37	Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Frontiers in Plant Science, 2015, 6, 596.	3.6	51
38	Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance. Plant Pathology Journal, 2005, 21, 7-12.	1.7	49
39	DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6, 983-995.	9.3	48
40	Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 2021, 161, 74-85.	5.8	48
41	Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates. Marine Drugs, 2015, 13, 3154-3181.	4.6	47
42	(+)-Pinoresinol synthase: A stereoselective oxidase catalysing 8,8′-lignan formation in Forsythia intermedia. Tetrahedron Letters, 1994, 35, 4731-4734.	1.4	46
43	Continuous light may induce photosynthetic downregulation in onion - consequences for growth and biomass partitioning. Physiologia Plantarum, 2005, 125, 235-246.	5.2	46
44	Defense gene expression induced by a coffee-leaf extract formulation in tomato. Physiological and Molecular Plant Pathology, 2009, 74, 175-183.	2.5	46
45	Rare trisubstituted sesquiterpenes daucanes from the wild Daucus carota. Phytochemistry, 2005, 66, 1680-1684.	2.9	45
46	Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat. Crop and Pasture Science, 2014, 65, 423.	1.5	45
47	Flavonoid-attracted <i>Aeromonas</i> sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME Journal, 2022, 16, 2622-2632.	9.8	44
48	Phytoalexin aurone induced in Cephalocereus senilis liquid suspension culture. Phytochemistry, 1991, 30, 1133-1135.	2.9	43
49	Rare prenylated flavonoids from Tephrosia purpurea. Phytochemistry, 2009, 70, 1474-1477.	2.9	39
50	Recent Advances in Kaempferia Phytochemistry and Biological Activity: A Comprehensive Review. Nutrients, 2019, 11, 2396.	4.1	39
51	In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors. Molecules, 2021, 26, 2082.	3.8	39
52	Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fìtoterapìâ, 2002, 73, 445-447.	2.2	38
53	Biofilm blocking sesquiterpenes from Teucrium polium. Phytochemistry, 2014, 103, 107-113.	2.9	37
54	Cembrene Diterpenoids with Ether Linkages from Sarcophyton ehrenbergi: An Anti-Proliferation and Molecular-Docking Assessment. Marine Drugs, 2017, 15, 192.	4.6	37

#	Article	IF	CITATIONS
55	Estrogenic Activity of Chemical Constituents from <i>Tephrosia candida</i> . Journal of Natural Products, 2011, 74, 937-942.	3.0	36
56	A new steroid from the Red Sea soft coral <i>Lobophytum lobophytum</i> . Natural Product Research, 2016, 30, 340-344.	1.8	36
57	Cytotoxicity of 40 Egyptian plant extracts targeting mechanisms of drug-resistant cancer cells. Phytomedicine, 2019, 59, 152771.	5.3	36
58	Antioxidant Capacity Connection with Phenolic and Flavonoid Content in Chinese Medicinal Herbs. Records of Natural Products, 2018, 12, 239-250.	1.3	36
59	Antifungal terpenoids from Chenopodium ambrosioides. Biochemical Systematics and Ecology, 1993, 21, 649-653.	1.3	35
60	<i>Teucrium polium</i> Phenylethanol and Iridoid Glycoside Characterization and Flavonoid Inhibition of Biofilm-Forming <i>Staphylococcus aureus</i> . Journal of Natural Products, 2015, 78, 2-9.	3.0	35
61	Stereoselective aldol coupling of α,β-acetylenic ketones promoted by MgI2. Tetrahedron Letters, 2003, 44, 949-952.	1.4	34
62	In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta, 2004, 218, 999-1007.	3.2	34
63	Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant and Soil, 2011, 347, 327-337.	3.7	33
64	Improved Growth and Metabolite Accumulation in <i>Codonopsis pilosula</i> (Franch.) Nannf. by Inoculation of <i>Bacillus amyloliquefaciens</i> GB03. Journal of Agricultural and Food Chemistry, 2016, 64, 8103-8108.	5.2	33
65	Beneficial soil microbe promotes seed germination, plant growth and photosynthesis in herbal crop Codonopsis pilosula. Crop and Pasture Science, 2016, 67, 91.	1.5	33
66	New Terpenes from the Egyptian Soft Coral Sarcophyton ehrenbergi. Marine Drugs, 2014, 12, 1977-1986.	4.6	32
67	Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava. Phytoparasitica, 2019, 47, 135-142.	1.2	32
68	A Novel Interaction between Plant-Beneficial Rhizobacteria and Roots: Colonization Induces Corn Resistance against the Root Herbivore Diabrotica speciosa. PLoS ONE, 2014, 9, e113280.	2.5	32
69	Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium <i>Staphylococcus aureus</i> : A Proteomic Characterization. Journal of Proteome Research, 2017, 16, 2579-2586.	3.7	30
70	Anti-selective and regioselective aldol addition of ketones with aldehydes using MgI2 as promoter. Tetrahedron, 2004, 60, 11829-11835.	1.9	29
71	Flavonoids from elicitor-treated cell suspension cultures of Cephalocereus senilis. Phytochemistry, 1993, 32, 925-928.	2.9	28
72	Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions. Environmental and Experimental Botany, 2004, 51, 273-280.	4.2	28

#	Article	IF	CITATIONS
73	Constituents of Chrysothamnus viscidiflorus. Phytochemistry, 2006, 67, 1547-1553.	2.9	28
74	Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass. International Journal of Molecular Sciences, 2017, 18, 2651.	4.1	28
75	Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Advances in Space Research, 2009, 44, 887-894.	2.6	27
76	The Aldol Reaction of Allenolates with Aldehydes in the Presence of Magnesium Diiodide (MgI2) as Catalyst. Helvetica Chimica Acta, 2003, 86, 3510-3515.	1.6	26
77	Polyol Monoterpenes and Sesquiterpene Lactones from the Pacific Northwest PlantArtemisiasuksdorfii. Journal of Natural Products, 2004, 67, 1705-1710.	3.0	26
78	Trochelioid A and B, new cembranoid diterpenes from the Red Sea soft coral Sarcophyton trocheliophorum. Phytochemistry Letters, 2013, 6, 383-386.	1.2	26
79	New cytotoxic constituents from the Red Sea soft coral <i>Nephthea</i> sp Natural Product Research, 2016, 30, 1266-1272.	1.8	26
80	Synthesis of β-iodo-α-(hydroxyalkyl)acrylates: a convenient and stereoselective reaction. Tetrahedron Letters, 2002, 43, 5677-5680.	1.4	25
81	Antimicrobial sesquiterpene lactones from <i>Artemisia sieberi</i> . Journal of Asian Natural Products Research, 2017, 19, 1093-1101.	1.4	24
82	Casbane Diterpenes from Red Sea Coral Sinularia polydactyla. Molecules, 2016, 21, 308.	3.8	23
83	High-elevation cultivation increases anti-cancer podophyllotoxin accumulation in Podophyllum hexandrum. Industrial Crops and Products, 2018, 121, 338-344.	5.2	23
84	Mapping podophyllotoxin biosynthesis and growth-related transcripts with high elevation in Sinopodophyllum hexandrum. Industrial Crops and Products, 2018, 124, 510-518.	5.2	23
85	Induction of phenylpropanoid pathway enzymes in elicitor-treated cultures ofCephalocereus senilis. Phytochemistry, 1992, 31, 149-153.	2.9	22
86	Asymmetric synthesis of chiral β-iodo Baylis–Hillman esters using Mgl2 as promoter via a one-pot three-component reaction. Tetrahedron: Asymmetry, 2003, 14, 971-974.	1.8	22
87	Chemical constituents and their antibacterial and antifungal activity from the Egyptian herbal medicine Chiliadenus montanus. Phytochemistry, 2014, 103, 154-161.	2.9	22
88	Evaluation of the anti-inflammatory, analgesic and anti-ulcerogenic potentials of Achillea fragrantissima (Forssk.). South African Journal of Botany, 2015, 98, 122-127.	2.5	22
89	Blue Biotechnology: Computational Screening of Sarcophyton Cembranoid Diterpenes for SARS-CoV-2 Main Protease Inhibition. Marine Drugs, 2021, 19, 391.	4.6	22
90	Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study. Antibiotics, 2021, 10, 934.	3.7	21

#	Article	IF	CITATIONS
91	Synthesis of Substitutedα-(Hydroxymethyl)-β-iodoacrylatesvia MgI2-Promoted Stereoselective Aldol Coupling. Helvetica Chimica Acta, 2004, 87, 2359-2363.	1.6	20
92	Euphosantianane A–D: Antiproliferative Premyrsinane Diterpenoids from the Endemic Egyptian Plant Euphorbia Sanctae-Catharinae. Molecules, 2018, 23, 2221.	3.8	20
93	Z/E Stereoselective synthesis of β-bromo Baylis–Hillman ketones using MgBr2 as promoter via a one-pot three-component reaction. Tetrahedron, 2004, 60, 10233-10237.	1.9	19
94	Rare hydroperoxyl guaianolide sesquiterpenes from Pulicaria undulata. Phytochemistry Letters, 2015, 12, 177-181.	1.2	19
95	Anti-inflammatory sesquiterpenes from the medicinal herb Tanacetum sinaicum. RSC Advances, 2015, 5, 44895-44901.	3.6	19
96	Nutrient Solution and Solution pH Influences on Onion Growth and Mineral Content. Journal of Plant Nutrition, 2006, 29, 375-390.	1.9	18
97	Chemical and antioxidant investigations: Norfolk pine needles (<i>Araucaria excelsa</i>). Pharmaceutical Biology, 2010, 48, 534-538.	2.9	18
98	Structure-antioxidant and anti-tumor activity of Teucrium polium phytochemicals. Phytochemistry Letters, 2016, 15, 81-87.	1.2	18
99	Cytotoxicity of abietane diterpenoids from Salvia multicaulis towards multidrug-resistant cancer cells. Fìtoterapìâ, 2018, 130, 54-60.	2.2	18
100	Cytotoxic cembranoids from the Red Sea soft coral Sarcophyton glaucum. Natural Product Communications, 2011, 6, 1809-12.	0.5	18
101	Manoyl Oxide α-Arabinopyranoside and Grindelic Acid Diterpenoids fromGrindelia integrifolia. Journal of Natural Products, 2001, 64, 1365-1367.	3.0	17
102	Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking. Planta Medica, 2016, 82, 138-146.	1.3	17
103	Beneficial Rhizobacteria Induce Plant Growth: Mapping Signaling Networks in Arabidopsis. Soil Biology, 2011, , 403-412.	0.8	17
104	Phytochemical Changes in Aerial Parts of Hypericum perforatum at Different Harvest Stages. Records of Natural Products, 2019, 13, 1-9.	1.3	17
105	Versatile One-Step One-Pot Direct Aldol Condensation Promoted by MgI2. Helvetica Chimica Acta, 2004, 87, 2354-2358.	1.6	16
106	MgI2-catalyzed halo aldol reaction: a practical approach to (E)-β-iodovinyl-β′-hydroxyketones. Organic and Biomolecular Chemistry, 2004, 2, 2893-2896.	2.8	16
107	New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare, Aplysia oculifera. Tetrahedron Letters, 2014, 55, 1711-1714.	1.4	16
108	Cytotoxic saponin poliusaposide from Teucrium polium. RSC Advances, 2015, 5, 27126-27133.	3.6	16

#	Article	IF	CITATIONS
109	Flavonol content and composition of spring onions grown hydroponically or in potting soil. Journal of Food Composition and Analysis, 2005, 18, 635-645.	3.9	15
110	Phytochemical Analysis and Antiâ€inflammatory Potential of <i>Hyphaene thebaica</i> L. Fruit. Journal of Food Science, 2013, 78, C1503-C1508.	3.1	15
111	Sarcoehrenbergilides D–F: cytotoxic cembrene diterpenoids from the soft coral <i>Sarcophyton ehrenbergi</i> . RSC Advances, 2019, 9, 27183-27189.	3.6	15
112	Dicer-like proteins influence Arabidopsis root microbiota independent of RNA-directed DNA methylation. Microbiome, 2021, 9, 57.	11.1	15
113	Cytotoxic Cembranoids from the Red Sea Soft Coral Sarcophyton glaucum. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	14
114	Bacteria-derived diacetyl enhances Arabidopsis phosphate starvation responses partially through the DELLA-dependent gibberellin signaling pathway. Plant Signaling and Behavior, 2020, 15, 1740872.	2.4	14
115	Cyclooxygenase (COX)-1 and -2 Inhibitory Labdane Diterpenes from <i>Crassocephalum mannii</i> . Journal of Natural Products, 2008, 71, 1070-1073.	3.0	13
116	Transcriptional Controls for Early Bolting and Flowering in Angelica sinensis. Plants, 2021, 10, 1931.	3.5	13
117	Exploring Toxins for Hunting SARS-CoV-2 Main Protease Inhibitors: Molecular Docking, Molecular Dynamics, Pharmacokinetic Properties, and Reactome Study. Pharmaceuticals, 2022, 15, 153.	3.8	13
118	Synthesis of hydroxy-substituted unsaturated fatty acids and the amino-acid insect-derivative volicitin. Tetrahedron Letters, 2003, 44, 831-833.	1.4	12
119	Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	12
120	Temperature-regulated anatomical and gene-expression changes in Sinopodophyllum hexandrum seedlings. Industrial Crops and Products, 2020, 152, 112479.	5.2	12
121	Moroccan Strawberry Tree (Arbutus unedo L.) Fruits: Nutritional Value and Mineral Composition. Foods, 2021, 10, 2263.	4.3	12
122	Exploring Natural Product Activity and Species Source Candidates for Hunting ABCB1 Transporter Inhibitors: An In Silico Drug Discovery Study. Molecules, 2022, 27, 3104.	3.8	12
123	Nor-ent-kaurane diterpenes and hydroxylactones from Antennaria geyeri and Anaphalis margaritacea. Phytochemistry, 2004, 65, 2539-2543.	2.9	11
124	3-Oxo-Î ³ -costic acid fungal-transformation generates eudesmane sesquiterpenes with in vitro tumor-inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3825-3828.	2.2	10
125	Extraction development for antimicrobial and phytotoxic essential oils from asteraceae species: <i>Achillea fragrantissima</i> , <i>Artemisia judaica</i> and <i>Tanacetum sinaicum</i> . Flavour and Fragrance Journal, 2021, 36, 352-364.	2.6	10
126	Potency of extracts from selected Egyptian plants as inducers of the Nrf2-dependent chemopreventive enzyme NQO1. Journal of Natural Medicines, 2016, 70, 683-688.	2.3	9

#	Article	IF	CITATIONS
127	Oxygenated Cembrene Diterpenes from Sarcophyton convolutum: Cytotoxic Sarcoconvolutum A–E. Marine Drugs, 2021, 19, 519.	4.6	9
128	Terpenoid bio-transformations and applications via cell/organ cultures: a systematic review. Critical Reviews in Biotechnology, 2020, 40, 64-82.	9.0	8
129	Guaianolide Sesquiterpene Lactones from Centaurothamnus maximus. Molecules, 2021, 26, 2055.	3.8	8
130	Carotane sesquiterpenes from <i>Ferula vesceritensis</i> : <i>in silico</i> analysis as SARS-CoV-2 binding inhibitors. RSC Advances, 2020, 10, 34541-34548.	3.6	7
131	Bacterial diacetyl suppresses abiotic stressâ€induced senescence in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1135-1139.	8.5	7
132	Ketoisophorone Transformation by Marchantia polymorpha and Nicotiana tabacum Cultured Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 403-408.	1.4	6
133	Steroidal Metabolites Transformed by Marchantia polymorpha Cultures Block Breast Cancer Estrogen Biosynthesis. Cell Biochemistry and Biophysics, 2012, 63, 85-96.	1.8	6
134	Iridoid glycoside permethylation enhances chromatographic separation and chemical ionization. Rapid Communications in Mass Spectrometry, 2016, 30, 2033-2042.	1.5	6
135	Paralemnolins X and Y, New Antimicrobial Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoide. Antibiotics, 2021, 10, 1158.	3.7	6
136	Biomass, Flavonol Levels and Sensory Characteristics of Allium Cultivars Grown Hydroponically at Ambient and Elevated CO2. , 2004, , .		5
137	Argolic Acid A and Argolic Methyl Ester B, Two New Cyclopentano-monoterpenes Diol from <i>Nepeta Argolica</i> . Natural Product Communications, 2006, 1, 1934578X0600100.	0.5	5
138	Monitoring a beneficial bacterium (Bacillus amyloliquefaciens) in the rhizosphere with arugula herbivory. Rhizosphere, 2021, 18, 100347.	3.0	5
139	Bacterial Volatile-Mediated Plant Abiotic Stress Tolerance. , 2020, , 187-200.		5
140	Biotransformation of Progesterone by Cultured Cells of Marchantia polymorpha. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2010, 65, 599-602.	1.4	4
141	Stachaegyptin A-C: Neo- clerodane diterpenes from Stachys aegyptiaca. Phytochemistry Letters, 2017, 21, 151-156.	1.2	4
142	Plant cell cultures: An enzymatic tool for polyphenolic and flavonoid transformations. Phytomedicine, 2022, 100, 154019.	5.3	4
143	Plant latent defense response to microbial non-pathogenic factors antagonizes compatibility. National Science Review, 2022, 9, .	9.5	4
144	Scallion (Allium fistulosum L.) Pungency Regulated by Genetic Makeup and Environmental Conditions (Light and CO2). , 2005, , .		3

#	Article	IF	CITATIONS
145	Anti-inflammatory Activity of New Guaiane Acid Derivatives from Achillea Coarctata. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	3
146	Artichoke Phenolics Confer Protection Against Acute Kidney Injury. Revista Brasileira De Farmacognosia, 2020, 30, 34-42.	1.4	3
147	A Microbial Fermentation Product Induces Defense-Related Transcriptional Changes and the Accumulation of Phenolic Compounds in <i>Glycine max</i> . Phytopathology, 2022, 112, 862-871.	2.2	3
148	Two new diterpenoids from kencur (Kaempferia galanga): Structure elucidation and chemosystematic significance. Phytochemistry Letters, 2021, 44, 185-189.	1.2	2
149	Anti-tumor metabolites from Synadenium grantii Hook F Medicinal Chemistry Research, 2022, 31, 666-673.	2.4	1
150	Stereoselective Aldol Coupling of \hat{l}_{\pm}, \hat{l}^2 -Acetylenic Ketones Promoted by MgI2 ChemInform, 2003, 34, no.	0.0	0
151	Asymmetric Synthesis of Chiral β-Iodo Baylis—Hillman Esters Using Mgl2 as Promoter via a One-Pot Three-Component Reaction ChemInform, 2003, 34, no.	0.0	0
152	Z/E Stereoselective Synthesis of ?-Bromo Baylis?Hillman Ketones Using MgBr2 as Promoter via a One-Pot Three-Component Reaction ChemInform, 2005, 36, no.	0.0	0
153	MgI2-Catalyzed Halo Aldol Reaction: A Practical Approach to (E)-?-Iodovinyl-??-hydroxyketones ChemInform, 2005, 36, no.	0.0	0
154	anti-Selective and Regioselective Aldol Addition of Ketones with Aldehydes Using MgI2 as Promoter ChemInform, 2005, 36, no.	0.0	0
155	Efficient Synthesis of the Insect Elicitor Volicitin and Biologically Active Analogs. Natural Product	0.5	0