Katherine S Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7967618/publications.pdf

Version: 2024-02-01

430754 330025 1,677 38 18 37 citations g-index h-index papers 42 42 42 1995 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthetic and biosynthetic routes to nitrogen–nitrogen bonds. Chemical Society Reviews, 2022, 51, 2991-3046.	18.7	37
2	Dentigerumycin F and G: Dynamic structures retrieved through a genome-mining/nitrogen-NMR methodology. Tetrahedron Letters, 2022, 94, 153688.	0.7	3
3	Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules, 2022, 27, 3569.	1.7	1
4	An engineered biosynthetic–synthetic platform for production of halogenated indolmycin antibiotics. Chemical Science, 2021, 12, 8817-8821.	3.7	2
5	Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. Nature Chemistry, 2021, 13, 599-606.	6.6	10
6	N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chemical Biology, 2021, 16, 701-711.	1.6	6
7	Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697. Anaerobe, 2021, 68, 102320.	1.0	3
8	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
9	A shared mechanistic pathway for pyridoxal phosphate–dependent arginine oxidases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
10	The Biosynthetic Gene Cluster of Pyrazomycin—A Câ€Nucleoside Antibiotic with a Rare Pyrazole Moiety. ChemBioChem, 2020, 21, 644-649.	1.3	38
11	Biosynthetic Pathways to Nonproteinogenic α-Amino Acids. Chemical Reviews, 2020, 120, 3161-3209.	23.0	94
12	Biosynthesis of the N–Nâ€Bondâ€Containing Compound <scp> </scp> â€Alanosine. Angewandte Chemie - International Edition, 2020, 59, 3881-3885.	7.2	35
13	Biosynthesis of the N–Nâ€Bondâ€Containing Compound I â€Alanosine. Angewandte Chemie, 2020, 132, 3909-3913.	1.6	9
14	Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chemical Biology, 2020, 15, 3253-3261.	1.6	8
15	Editorial: Mechanistic biology in the biosynthesis of specialized metabolites. Current Opinion in Chemical Biology, 2020, 59, A1-A3.	2.8	0
16	Comparative Genomics Identified a Genetic Locus in Plant-Associated <i>Pseudomonas</i> spp. That Is Necessary for Induced Systemic Susceptibility. MBio, 2020, 11, .	1.8	9
17	Emergence of oxygen―and pyridoxal phosphateâ€dependent reactions. FEBS Journal, 2020, 287, 1403-1428.	2.2	29
18	Incarnatapeptins A and B, Nonribosomal Peptides Discovered Using Genome Mining and ¹ H/ ¹⁵ N HSQC-TOCSY. Organic Letters, 2020, 22, 4053-4057.	2.4	14

#	Article	IF	Citations
19	Convergent biosynthetic transformations to a bacterial specialized metabolite. Nature Chemical Biology, 2019, 15, 1043-1048.	3.9	10
20	An Asymmetric Reductase That Intercepts Acyclic Imino Acids Produced <i>in Situ</i> by a Partner Oxidase. Journal of the American Chemical Society, 2019, 141, 12258-12267.	6.6	5
21	In vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie - International Edition, 2019, 58, 11647-11651.	7.2	36
22	In vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie, 2019, 131, 11773-11777.	1.6	2
23	Piperazic acid-containing natural products: structures and biosynthesis. Natural Product Reports, 2019, 36, 1628-1653.	5.2	53
24	Two-Enzyme Pathway Links <scp>l</scp> -Arginine to Nitric Oxide in <i>N</i> -Nitroso Biosynthesis. Journal of the American Chemical Society, 2019, 141, 4026-4033.	6.6	64
25	Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Natural Product Reports, 2019, 36, 430-457.	5. 2	75
26	Snapshots of the Catalytic Cycle of an O ₂ , Pyridoxal Phosphate-Dependent Hydroxylase. ACS Chemical Biology, 2018, 13, 965-974.	1.6	12
27	Metalloenzymes in natural product biosynthetic pathways. Natural Product Reports, 2018, 35, 612-614.	5.2	4
28	Snapshots of the catalytic cycle of an O 2 , pyridoxal phosphateâ€dependent hydroxylase. FASEB Journal, 2018, 32, 796.35.	0.2	0
29	A heme-dependent enzyme forms the nitrogen–nitrogen bond in piperazate. Nature Chemical Biology, 2017, 13, 836-838.	3.9	108
30	A pyridoxal phosphate–dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nature Chemical Biology, 2016, 12, 194-199.	3.9	37
31	Catalytic repertoire of bacterial bisindole formation. Current Opinion in Chemical Biology, 2016, 31, 74-81.	2.8	14
32	Reduced deformability of parasitized red blood cells as a biomarker for anti-malarial drug efficacy. Malaria Journal, 2015, 14, 428.	0.8	17
33	In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2717-2722.	3.3	51
34	Expansion of Bisindole Biosynthetic Pathways by Combinatorial Construction. ACS Synthetic Biology, 2015, 4, 682-688.	1.9	22
35	Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chemistry and Biology, 2015, 22, 317-328.	6.2	142
36	Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1957-1962.	3.3	403

#	Article	IF	CITATIONS
37	N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis. Chemistry and Biology, 2013, 20, 1002-1011.	6.2	24
38	Biosynthetic Gene Cluster for the Cladoniamides, Bis-Indoles with a Rearranged Scaffold. PLoS ONE, 2011, 6, e23694.	1.1	34