Jacek Fal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7967370/publications.pdf

Version: 2024-02-01

516710 552781 27 837 16 26 citations h-index g-index papers 27 27 27 679 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Experimental study on the density, surface tension and electrical properties of ZrO ₂ –EG nanofluids. Physics and Chemistry of Liquids, 2023, 61, 14-24.	1.2	9
2	Thermophysical, rheological and electrical properties of mono and hybrid TiB2/B4C nanofluids based on a propylene glycol:water mixture. Powder Technology, 2022, 395, 391-399.	4.2	18
3	Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration. Powder Technology, 2022, 404, 117423.	4.2	14
4	Thermophysical profile of ethylene glycol based nanofluids containing two types of carbon black nanoparticles with different specific surface areas. Journal of Molecular Liquids, 2021, 326, 115255.	4.9	36
5	High AC and DC Electroconductivity of Scalable and Economic Graphite–Diamond Polylactide Nanocomposites. Materials, 2021, 14, 2835.	2.9	6
6	Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology. Polymers, 2021, 13, 2455.	4.5	17
7	3D printed measuring device for the determination the surface tension of nanofluids. Applied Surface Science, 2021, 561, 149878.	6.1	15
8	Surface tension of ethylene glycol-based nanofluids containing various types of nitrides. Journal of Thermal Analysis and Calorimetry, 2020, 139, 799-806.	3.6	36
9	Thermal and Physical Characterization of PEG Phase Change Materials Enhanced by Carbon-Based Nanoparticles. Nanomaterials, 2020, 10, 1168.	4.1	40
10	Electrical and Optical Properties of Silicon Oxide Lignin Polylactide (SiO2-L-PLA). Molecules, 2020, 25, 1354.	3.8	5
11	Nanostructuring of 1-butyl-4-methylpyridinium chloride in ionic liquid–iron oxide nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1373-1380.	3.6	8
12	Electrical Conductivity and Dielectric Properties of Ethylene Glycol-Based Nanofluids Containing Silicon Oxide–Lignin Hybrid Particles. Nanomaterials, 2019, 9, 1008.	4.1	24
13	Optical and dielectric properties of ethylene glycol-based nanofluids containing nanodiamonds with various purities. Powder Technology, 2019, 356, 508-516.	4.2	18
14	Synthesis and electrochemical characterization of electroactive IoNanofluids with high dielectric constants from hydrated ferrous sulphate. Chemical Communications, 2019, 55, 83-86.	4.1	10
15	Nanodiamonds – Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. International Journal of Heat and Mass Transfer, 2018, 121, 1201-1213.	4.8	73
16	Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review. Energies, 2018, 11, 2942.	3.1	42
17	Ethylene glycol based silicon nitride nanofluids: An experimental study on their thermophysical, electrical and optical properties. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 82-90.	2.7	35
18	Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies. Thermochimica Acta, 2017, 650, 106-113.	2.7	112

#	Article	lF	CITATION
19	The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids. Diamond and Related Materials, 2017, 74, 81-89.	3.9	45
20	Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles. International Journal of Heat and Mass Transfer, 2017, 113, 1189-1199.	4.8	72
21	Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids. Journal of Electronic Materials, 2017, 46, 856-865.	2.2	11
22	Thermal conductivity of diethylene glycol based magnesium–aluminum spinel (MgAl2O4-DG) nanofluids. Heat and Mass Transfer, 2017, 53, 1905-1909.	2.1	0
23	Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids. Thermochimica Acta, 2016, 637, 11-16.	2.7	100
24	Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids. Nanoscale Research Letters, 2016, 11, 375.	5.7	26
25	Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids. Materials Chemistry and Physics, 2016, 180, 250-255.	4.0	48
26	Electrical Properties of Aluminum Oxide-Ethylene Glycol (Alâ,,Oâ,f-EG) Nanofluids. Acta Physica Polonica A, 2015, 128, 153-156.	0.5	1
27	Dynamic Viscosity of Aluminum Oxide-Ethylene Glycol (Alâ,,Oâ,f-EG) Nanofluids. Acta Physica Polonica A, 2015, 128, 240-242.	0.5	16