Manuel Schnabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/796712/publications.pdf Version: 2024-02-01

MANUEL SCHNAREL

#	Article	IF	CITATIONS
1	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	19.5	114
2	Stable SEI Formation on Al-Si-Mn Metallic Glass Li-Ion Anode. Journal of the Electrochemical Society, 2021, 168, 100521.	2.9	3
3	Stable SEI Formation on Al-Si-Mn Metallic Glass Li-Ion Anode. ECS Meeting Abstracts, 2021, MA2021-02, 1822-1822.	0.0	0
4	Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesive. Sustainable Energy and Fuels, 2020, 4, 549-558.	4.9	46
5	Effect of Water Concentration in LiPF ₆ -Based Electrolytes on the Formation, Evolution, and Properties of the Solid Electrolyte Interphase on Si Anodes. ACS Applied Materials & Interfaces, 2020, 12, 49563-49573.	8.0	27
6	Microscopic Observation of Solid Electrolyte Interphase Bilayer Inversion on Silicon Oxide. ACS Energy Letters, 2020, 5, 3657-3662.	17.4	26
7	Enhanced Interfacial Stability of Si Anodes for Li-Ion Batteries via Surface SiO ₂ Coating. ACS Applied Energy Materials, 2020, 3, 8842-8849.	5.1	38
8	Surface SiO ₂ Thickness Controls Uniform-to-Localized Transition in Lithiation of Silicon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 27017-27028.	8.0	37
9	Nonpassivated Silicon Anode Surface. ACS Applied Materials & Interfaces, 2020, 12, 26593-26600.	8.0	45
10	On the hydrogenation of Poly-Si passivating contacts by Al2O3 and SiN thin films. Solar Energy Materials and Solar Cells, 2020, 215, 110592.	6.2	53
11	Kinetics of Lithium Insertion and Plating on Basal and Edge Planes of Graphite. ECS Meeting Abstracts, 2020, MA2020-02, 543-543.	0.0	0
12	Backâ€contacted bottom cells with three terminals: Maximizing power extraction from currentâ€mismatched tandem cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 410-423.	8.1	31
13	The Decoupling of Solid-Electrolyte Interphase Formation from the Mechanical Deformation of Silicon Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	0
14	Lithiation of Oxidised Silicon. ECS Meeting Abstracts, 2019, , .	0.0	0
15	The Effect of Water Concentration in Carbonate-Based Electrolytes on the Si Anode/Electrolyte Interface. ECS Meeting Abstracts, 2019, , .	0.0	0
16	III-V/Si Tandem Cells Utilizing Interdigitated Back Contact Si Cells and Varying Terminal Configurations. , 2019, , .		2
17	Transparent Conductive Adhesives for Tandem Solar Cells Using Polymer–Particle Composites. ACS Applied Materials & Interfaces, 2018, 10, 8086-8091.	8.0	25
18	HVPE-Grown GaAs//Si Tandem Device Performance. , 2018, , .		0

MANUEL SCHNABEL

#	Article	IF	CITATIONS
19	Operating principles of three-terminal solar cells. , 2018, , .		4
20	Equivalent Performance in Three-Terminal and Four-Terminal Tandem Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1584-1589.	2.5	31
21	Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium. Applied Physics Letters, 2018, 112, .	3.3	80
22	Yield analysis and comparison of GaInP/Si and GaInP/GaAs multi-terminal tandem solar cells. AIP Conference Proceedings, 2018, , .	0.4	2
23	Raising the one-sun conversion efficiency of Ill–V/Si solar cells to 32.8% for two junctions andÂ35.9% for three junctions. Nature Energy, 2017, 2, .	39.5	424
24	III-V/Si tandem cell to module interconnection - comparison between different operation modes. , 2017, , \cdot		1
25	An Isotope Study of Hydrogen Passivation of poly-Si/SiOx Passivated Contacts for Si Solar Cells. , 2017, , .		0
26	Transparent Conductive Adhesives for Tandem Solar Cells. , 2017, , .		5
27	Formation of silicon nanocrystals in silicon carbide using flash lamp annealing. Journal of Applied Physics, 2016, 120, .	2.5	1
28	Monolithic Si nanocrystal/crystalline Si tandem cells involving Si nanocrystals in SiC. Progress in Photovoltaics: Research and Applications, 2016, 24, 1165-1177.	8.1	6
29	Structural and optical properties of silicon nanocrystals embedded in silicon carbide: Comparison of single layers and multilayer structures. Applied Surface Science, 2015, 351, 550-557.	6.1	5
30	Nanocrystalline SiC formed by annealing of a-SiC:H on Si substrates: A study of dopant interdiffusion. Journal of Applied Physics, 2014, 116, 024315.	2.5	5
31	A Membrane Device for Substrateâ€Free Photovoltaic Characterization of Quantum Dot Based pâ€iâ€n Solar Cells. Advanced Materials, 2012, 24, 3124-3129.	21.0	34