Alessandro Gori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7966464/publications.pdf

Version: 2024-02-01

69 papers 1,567 citations

236925 25 h-index 36 g-index

72 all docs

72 docs citations

times ranked

72

2706 citing authors

#	Article	IF	CITATIONS
1	Elucidating the 3D Structure of a Surface Membrane Antigen from Trypanosoma cruzi as a Serodiagnostic Biomarker of Chagas Disease. Vaccines, 2022, 10, 71.	4.4	O
2	Composite Peptide–Agarose Hydrogels for Robust and High-Sensitivity 3D Immunoassays. ACS Applied Materials & Discrete Representation (2022), 14, 4811-4822.	8.0	8
3	Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus. Biosensors and Bioelectronics, 2022, 202, 113996.	10.1	9
4	Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascular Pharmacology, 2022, 145, 106999.	2.1	11
5	Emergence of Elastic Properties in a Minimalist Resilinâ€Derived Heptapeptide upon Bromination. Small, 2022, 18, .	10.0	5
6	Multifunctional membranes for lipidic nanovesicle capture. Separation and Purification Technology, 2022, 298, 121561.	7.9	4
7	SARS-CoV-2 Epitope Mapping on Microarrays Highlights Strong Immune-Response to N Protein Region. Vaccines, 2021, 9, 35.	4.4	38
8	Extracellular Vesicles Analysis in the COVID-19 Era: Insights on Serum Inactivation Protocols towards Downstream Isolation and Analysis. Cells, 2021, 10, 544.	4.1	10
9	Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for $\hat{l}_{\pm}\nu\hat{l}^{2}$ 3-Integrin Targeting. Frontiers in Chemistry, 2021, 9, 690357.	3.6	2
10	Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. Journal of Nanobiotechnology, 2021, 19, 128.	9.1	13
11	The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nature Structural and Molecular Biology, 2021, 28, 662-670.	8.2	19
12	Self-Assembling Peptide Hydrogels for 3D Microarrays. Methods in Molecular Biology, 2021, 2237, 179-189.	0.9	2
13	A bi-functional polymeric coating for the co-immobilization of proteins and peptides on microarray substrates. Analytica Chimica Acta, 2021, 1187, 339138.	5.4	5
14	Digital count of antibodies through differential impedance for high-resolution immunosensing. , 2021, , .		1
15	Hexokinase 2 displacement from mitochondriaâ€associated membranes prompts Ca ²⁺ â€dependent death of cancer cells. EMBO Reports, 2020, 21, e49117.	4.5	62
16	Chemical Perturbation of Oncogenic Protein Folding: from the Prediction of Locally Unstable Structures to the Design of Disruptors of Hsp90–Client Interactions. Chemistry - A European Journal, 2020, 26, 9459-9465.	3.3	39
17	Halogenation of the N â€Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloidâ€Î² Sequence 7–12. ChemistryOpen, 2020, 9, 253-260.	1.9	6
18	Biomimetic engineering of the molecular recognition and self-assembly of peptides and proteins via halogenation. Coordination Chemistry Reviews, 2020, 411, 213242.	18.8	37

#	Article	IF	CITATIONS
19	Enhanced self-assembly of the $7\hat{a}\in 12$ sequence of amyloid- \hat{l}^2 peptide by tyrosine bromination. Supramolecular Chemistry, 2020, 32, 247-255.	1,2	8
20	A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus. Journal of Biological Chemistry, 2020, 295, 3635-3651.	3.4	21
21	Membraneâ€binding peptides for extracellular vesicles onâ€chip analysis. Journal of Extracellular Vesicles, 2020, 9, 1751428.	12.2	47
22	Diflunisal targets the <scp>HMGB</scp> 1/ <scp>CXCL</scp> 12 heterocomplex and blocks immune cell recruitment. EMBO Reports, 2019, 20, e47788.	4.5	34
23	Towards precision medicine: the role and potential of protein and peptide microarrays. Analyst, The, 2019, 144, 5353-5367.	3.5	14
24	Clickable cellulosic surfaces for peptide-based bioassays. Talanta, 2019, 205, 120152.	5.5	9
25	A self-assembling peptide hydrogel for ultrarapid 3D bioassays. Nanoscale Advances, 2019, 1, 490-497.	4.6	19
26	Computational Analysis of Dengue Virus Envelope Protein (E) Reveals an Epitope with Flavivirus Immunodiagnostic Potential in Peptide Microarrays. International Journal of Molecular Sciences, 2019, 20, 1921.	4.1	31
27	Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays. Antibodies, 2019, 8, 23.	2.5	18
28	A stapled chromogranin A-derived peptide is a potent dual ligand for integrins $\hat{l}\pm v\hat{l}^26$ and $\hat{l}\pm v\hat{l}^28$. Chemical Communications, 2019, 55, 14777-14780.	4.1	5
29	The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis, 2019, 22, 133-144.	7.2	37
30	$$ $$ $$ $$ $$ $$ $$ $$ $$	14.6	25
31	Enhancing Antibody Serodiagnosis Using a Controlled Peptide Coimmobilization Strategy. ACS Infectious Diseases, 2018, 4, 998-1006.	3.8	25
32	Mosquito-Derived Anophelin Sulfoproteins Are Potent Antithrombotics. ACS Central Science, 2018, 4, 468-476.	11.3	37
33	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	10.0	23
34	Dynamics of Structural Elements of GB1 β-Hairpin Revealed by Tryptophan–Cysteine Contact Formation Experiments. Journal of Physical Chemistry B, 2018, 122, 11468-11477.	2.6	6
35	Design of new nanocarriers for biomedical applications. AIP Conference Proceedings, 2018, , .	0.4	1
36	A halogen bond-donor amino acid for organocatalysis in water. Chemical Communications, 2018, 54, 10718-10721.	4.1	42

#	Article	IF	Citations
37	Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to $\hat{l}\pm <$ sub> $vsub>\hat{l}^2<sub>3sub> without Promoting Integrin Allosteric Activation. Journal of Medicinal Chemistry, 2018, 61, 7474-7485.$	6.4	19
38	The enzymatic processing of $\hat{l}\pm$ -dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site. PLoS ONE, 2018, 13, e0192651.	2.5	4
39	T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut, 2017, 66, 454-463.	12.1	48
40	Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Analytica Chimica Acta, 2017, 983, 189-197.	5.4	27
41	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	5.6	33
42	Unraveling Energy and Dynamics Determinants to Interpret Protein Functional Plasticity: The Limonene-1,2-epoxide-hydrolase Case Study. Journal of Chemical Information and Modeling, 2017, 57, 717-725.	5.4	5
43	Frontispiece: Disulfide Bond Mimetics: Strategies and Challenges. Chemistry - A European Journal, 2017, 23, .	3.3	0
44	Disulfide Bond Mimetics: Strategies and Challenges. Chemistry - A European Journal, 2017, 23, 14987-14995.	3.3	38
45	Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting <i>Burkholderia</i> Infections. ACS Infectious Diseases, 2017, 3, 736-743.	3.8	8
46	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	14.9	19
47	Structural Vaccinology for Melioidosis Vaccine Design and Immunodiagnostics. Current Tropical Medicine Reports, 2017, 4, 103-110.	3.7	1
48	Abstract 5130: Tumor-penetrating peptide-coated nanoparticles as a novel strategy for the targeted therapy of neuroblastoma. , 2017, , .		0
49	Screening Complex Biological Samples with Peptide Microarrays: The Favorable Impact of Probe Orientation via Chemoselective Immobilization Strategies on Clickable Polymeric Coatings. Bioconjugate Chemistry, 2016, 27, 2669-2677.	3.6	40
50	Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis. Scientific Reports, 2016, 6, 32873.	3.3	21
51	Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the <i>Burkholderia pseudomallei</i> BPSL2765 Pal3 Epitope. ACS Infectious Diseases, 2016, 2, 221-230.	3.8	22
52	NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Research, 2016, 9, 1393-1408.	10.4	48
53	Chemoselective Strategies to Peptide and Protein Bioprobes Immobilization on Microarray Surfaces. Methods in Molecular Biology, 2016, 1352, 145-156.	0.9	9
54	Clickable Polymeric Coating for Oriented Peptide Immobilization. Methods in Molecular Biology, 2016, 1352, 167-182.	0.9	3

#	Article	IF	CITATIONS
55	Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Neglected Tropical Diseases, 2015, 9, e0003917.	3.0	40
56	α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biology, 2015, 41, 2-7.	3.6	12
57	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	11.4	36
58	Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. Journal of Allergy and Clinical Immunology, 2015, 136, 413-422.	2.9	102
59	Structure-Based Design of a B Cell Antigen from <i>B. pseudomallei</i> . ACS Chemical Biology, 2015, 10, 803-812.	3.4	12
60	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	13.8	45
61	Prediction of Antigenic B and T Cell Epitopes via Energy Decomposition Analysis: Description of the Web-Based Prediction Tool BEPPE. Methods in Molecular Biology, 2015, 1348, 13-22.	0.9	6
62	Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25, 1381-1386.	3.6	19
63	Exploiting the Burkholderia pseudomallei Acute Phase Antigen BPSL2765 for Structure-Based Epitope Discovery/Design in Structural Vaccinology. Chemistry and Biology, 2013, 20, 1147-1156.	6.0	50
64	Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.	9.9	41
65	Rational Epitope Design for Protein Targeting. ACS Chemical Biology, 2013, 8, 397-404.	3.4	36
66	A Structure-Based Strategy for Epitope Discovery in Burkholderia pseudomallei OppA Antigen. Structure, 2013, 21, 167-175.	3.3	49
67	Peptides for immunological purposes: design, strategies and applications. Amino Acids, 2013, 45, 257-268.	2.7	61
68	1 <i>H</i> à€Azepineâ€4â€aminoâ€4â€carboxylic Acid: A New α,αâ€Disubstituted Ornithine Analogue Capable Helix Conformations in Short Alaâ€Aib Pentapeptides. Chemistry - A European Journal, 2012, 18, 8705-8715.	of Inducin	g ₃₀
69	A Self-assembling Peptide Hydrogel for Ultrarapid 3D Immunoassays. , 0, , .		O