
Alessandro Gori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7966464/publications.pdf Version: 2024-02-01

ALESSANDRO CORL

#	Article	IF	CITATIONS
1	Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. Journal of Allergy and Clinical Immunology, 2015, 136, 413-422.	2.9	102
2	Hexokinase 2 displacement from mitochondriaâ€associated membranes prompts Ca ²⁺ â€dependent death of cancer cells. EMBO Reports, 2020, 21, e49117.	4.5	62
3	Peptides for immunological purposes: design, strategies and applications. Amino Acids, 2013, 45, 257-268.	2.7	61
4	Exploiting the Burkholderia pseudomallei Acute Phase Antigen BPSL2765 for Structure-Based Epitope Discovery/Design in Structural Vaccinology. Chemistry and Biology, 2013, 20, 1147-1156.	6.0	50
5	A Structure-Based Strategy for Epitope Discovery in Burkholderia pseudomallei OppA Antigen. Structure, 2013, 21, 167-175.	3.3	49
6	NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Research, 2016, 9, 1393-1408.	10.4	48
7	T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut, 2017, 66, 454-463.	12.1	48
8	Membraneâ€binding peptides for extracellular vesicles onâ€chip analysis. Journal of Extracellular Vesicles, 2020, 9, 1751428.	12.2	47
9	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	13.8	45
10	A halogen bond-donor amino acid for organocatalysis in water. Chemical Communications, 2018, 54, 10718-10721.	4.1	42
11	Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.	9.9	41
12	Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Neglected Tropical Diseases, 2015, 9, e0003917.	3.0	40
13	Screening Complex Biological Samples with Peptide Microarrays: The Favorable Impact of Probe Orientation via Chemoselective Immobilization Strategies on Clickable Polymeric Coatings. Bioconjugate Chemistry, 2016, 27, 2669-2677.	3.6	40
14	Chemical Perturbation of Oncogenic Protein Folding: from the Prediction of Locally Unstable Structures to the Design of Disruptors of Hsp90–Client Interactions. Chemistry - A European Journal, 2020, 26, 9459-9465.	3.3	39
15	Disulfide Bond Mimetics: Strategies and Challenges. Chemistry - A European Journal, 2017, 23, 14987-14995.	3.3	38
16	SARS-CoV-2 Epitope Mapping on Microarrays Highlights Strong Immune-Response to N Protein Region. Vaccines, 2021, 9, 35.	4.4	38
17	Mosquito-Derived Anophelin Sulfoproteins Are Potent Antithrombotics. ACS Central Science, 2018, 4, 468-476.	11.3	37
18	The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis, 2019, 22, 133-144.	7.2	37

ALESSANDRO GORI

#	Article	IF	CITATIONS
19	Biomimetic engineering of the molecular recognition and self-assembly of peptides and proteins via halogenation. Coordination Chemistry Reviews, 2020, 411, 213242.	18.8	37
20	Rational Epitope Design for Protein Targeting. ACS Chemical Biology, 2013, 8, 397-404.	3.4	36
21	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	11.4	36
22	Diflunisal targets the <scp>HMGB</scp> 1/ <scp>CXCL</scp> 12 heterocomplex and blocks immune cell recruitment. EMBO Reports, 2019, 20, e47788.	4.5	34
23	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	5.6	33
24	Computational Analysis of Dengue Virus Envelope Protein (E) Reveals an Epitope with Flavivirus Immunodiagnostic Potential in Peptide Microarrays. International Journal of Molecular Sciences, 2019, 20, 1921.	4.1	31
25	1 <i>H</i> â€Azepineâ€4â€aminoâ€4â€carboxylic Acid: A New α,αâ€Disubstituted Ornithine Analogue Capable of Helix Conformations in Short Alaâ€Aib Pentapeptides. Chemistry - A European Journal, 2012, 18, 8705-8715.	Inducing	30
26	Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Analytica Chimica Acta, 2017, 983, 189-197.	5.4	27
27	Enhancing Antibody Serodiagnosis Using a Controlled Peptide Coimmobilization Strategy. ACS Infectious Diseases, 2018, 4, 998-1006.	3.8	25
28	<i>In Situ</i> Generation of Chiroptically-Active Gold-Peptide Superstructures Promoted by Iodination. ACS Nano, 2019, 13, 2158-2166.	14.6	25
29	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	10.0	23
30	Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the <i>Burkholderia pseudomallei</i> BPSL2765 Pal3 Epitope. ACS Infectious Diseases, 2016, 2, 221-230.	3.8	22
31	Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis. Scientific Reports, 2016, 6, 32873.	3.3	21
32	A nicotinamide phosphoribosyltransferase–GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus. Journal of Biological Chemistry, 2020, 295, 3635-3651.	3.4	21
33	Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25, 1381-1386.	3.6	19
34	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	14.9	19
35	Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to α _v β ₃ without Promoting Integrin Allosteric Activation. Journal of Medicinal Chemistry, 2018, 61, 7474-7485.	6.4	19
36	A self-assembling peptide hydrogel for ultrarapid 3D bioassays. Nanoscale Advances, 2019, 1, 490-497.	4.6	19

ALESSANDRO GORI

#	Article	IF	CITATIONS
37	The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nature Structural and Molecular Biology, 2021, 28, 662-670.	8.2	19
38	Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays. Antibodies, 2019, 8, 23.	2.5	18
39	Towards precision medicine: the role and potential of protein and peptide microarrays. Analyst, The, 2019, 144, 5353-5367.	3.5	14
40	Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. Journal of Nanobiotechnology, 2021, 19, 128.	9.1	13
41	α-dystroglycan is a potential target of matrix metalloproteinase MMP-2. Matrix Biology, 2015, 41, 2-7.	3.6	12
42	Structure-Based Design of a B Cell Antigen from <i>B. pseudomallei</i> . ACS Chemical Biology, 2015, 10, 803-812.	3.4	12
43	Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascular Pharmacology, 2022, 145, 106999.	2.1	11
44	Extracellular Vesicles Analysis in the COVID-19 Era: Insights on Serum Inactivation Protocols towards Downstream Isolation and Analysis. Cells, 2021, 10, 544.	4.1	10
45	Clickable cellulosic surfaces for peptide-based bioassays. Talanta, 2019, 205, 120152.	5.5	9
46	Chemoselective Strategies to Peptide and Protein Bioprobes Immobilization on Microarray Surfaces. Methods in Molecular Biology, 2016, 1352, 145-156.	0.9	9
47	Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus. Biosensors and Bioelectronics, 2022, 202, 113996.	10.1	9
48	Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting <i>Burkholderia</i> Infections. ACS Infectious Diseases, 2017, 3, 736-743.	3.8	8
49	Enhanced self-assembly of the 7–12 sequence of amyloid-β peptide by tyrosine bromination. Supramolecular Chemistry, 2020, 32, 247-255.	1.2	8
50	Composite Peptide–Agarose Hydrogels for Robust and High-Sensitivity 3D Immunoassays. ACS Applied Materials & Interfaces, 2022, 14, 4811-4822.	8.0	8
51	Dynamics of Structural Elements of GB1 β-Hairpin Revealed by Tryptophan–Cysteine Contact Formation Experiments. Journal of Physical Chemistry B, 2018, 122, 11468-11477.	2.6	6
52	Halogenation of the N â€Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloidâ€Î² Sequence 7–12. ChemistryOpen, 2020, 9, 253-260.	1.9	6
53	Prediction of Antigenic B and T Cell Epitopes via Energy Decomposition Analysis: Description of the Web-Based Prediction Tool BEPPE. Methods in Molecular Biology, 2015, 1348, 13-22.	0.9	6
54	Unraveling Energy and Dynamics Determinants to Interpret Protein Functional Plasticity: The Limonene-1,2-epoxide-hydrolase Case Study. Journal of Chemical Information and Modeling, 2017, 57, 717-725.	5.4	5

ALESSANDRO GORI

#	Article	IF	CITATIONS
55	A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chemical Communications, 2019, 55, 14777-14780.	4.1	5
56	A bi-functional polymeric coating for the co-immobilization of proteins and peptides on microarray substrates. Analytica Chimica Acta, 2021, 1187, 339138.	5.4	5
57	Emergence of Elastic Properties in a Minimalist Resilinâ€Derived Heptapeptide upon Bromination. Small, 2022, 18, .	10.0	5
58	The enzymatic processing of \hat{l} ±-dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site. PLoS ONE, 2018, 13, e0192651.	2.5	4
59	Multifunctional membranes for lipidic nanovesicle capture. Separation and Purification Technology, 2022, 298, 121561.	7.9	4
60	Clickable Polymeric Coating for Oriented Peptide Immobilization. Methods in Molecular Biology, 2016, 1352, 167-182.	0.9	3
61	Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for $\hat{I}_{\pm}v\hat{I}^2$ 3-Integrin Targeting. Frontiers in Chemistry, 2021, 9, 690357.	3.6	2
62	Self-Assembling Peptide Hydrogels for 3D Microarrays. Methods in Molecular Biology, 2021, 2237, 179-189.	0.9	2
63	Structural Vaccinology for Melioidosis Vaccine Design and Immunodiagnostics. Current Tropical Medicine Reports, 2017, 4, 103-110.	3.7	1
64	Design of new nanocarriers for biomedical applications. AIP Conference Proceedings, 2018, , .	0.4	1
65	Digital count of antibodies through differential impedance for high-resolution immunosensing. , 2021, , .		1
66	Frontispiece: Disulfide Bond Mimetics: Strategies and Challenges. Chemistry - A European Journal, 2017, 23, .	3.3	0
67	Abstract 5130: Tumor-penetrating peptide-coated nanoparticles as a novel strategy for the targeted therapy of neuroblastoma. , 2017, , .		Ο
68	A Self-assembling Peptide Hydrogel for Ultrarapid 3D Immunoassays. , 0, , .		0
69	Elucidating the 3D Structure of a Surface Membrane Antigen from Trypanosoma cruzi as a Serodiagnostic Biomarker of Chagas Disease. Vaccines, 2022, 10, 71.	4.4	0