Jingshan Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7966398/publications.pdf

Version: 2024-02-01

758635 1125271 13 788 12 13 citations h-index g-index papers 14 14 14 1144 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CDK4/6 Inhibition Suppresses p73 Phosphorylation and Activates DR5 to Potentiate Chemotherapy and Immune Checkpoint Blockade. Cancer Research, 2022, 82, 1340-1352.	0.4	11
2	Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene, 2021, 40, 2035-2050.	2.6	21
3	BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene, 2021, 40, 6566-6578.	2.6	14
4	Mcl-1 inhibition overcomes intrinsic and acquired Regorafenib resistance in Colorectal Cancer. Theranostics, 2020, 10, 8098-8110.	4.6	45
5	BET Inhibitors Potentiate Chemotherapy and Killing of <i>SPOP</i> Induction of DR5. Cancer Research, 2019, 79, 1191-1203.	0.4	40
6	PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3930-3935.	3.3	121
7	Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene, 2018, 37, 4599-4610.	2.6	30
8	Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Research, 2018, 78, 4704-4715.	0.4	49
9	Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells. Cancer Research, 2017, 77, 2512-2521.	0.4	118
10	<i>FBW7</i> -Dependent Mcl-1 Degradation Mediates the Anticancer Effect of Hsp90 Inhibitors. Molecular Cancer Therapeutics, 2017, 16, 1979-1988.	1.9	57
11	FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene, 2017, 36, 787-796.	2.6	134
12	<i>BRAFV600E</i> -dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget, 2016, 7, 47699-47710.	0.8	51
13	Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nature Communications, 2015, 6, 8305.	5.8	97