Yusheng Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7966369/yusheng-zhao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

232
papers

9,678
citations

50
h-index

9-index

11,019
ext. papers

7
ext. citations

7
avg, IF

L-index

#	Paper	IF	Citations
232	Antiperovskite Electrolytes for Solid-State Batteries <i>Chemical Reviews</i> , 2022 ,	68.1	18
231	Unravelling mechanisms for the formation of amorphous bands in B6O under nonhydrostatic pressure. <i>Scripta Materialia</i> , 2022 , 209, 114376	5.6	
230	Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@Fullerene interphase layer for ultrastable lithium metal anodes. <i>Chemical Engineering Journal</i> , 2022 , 429, 132156	14.7	7
229	Giant Viscoelasticity near Mott Criticality in PbCrO_{3} with Large Lattice Anomalies <i>Physical Review Letters</i> , 2022 , 128, 095702	7.4	0
228	Pressure-induced polymerization and bandgap-adjustment of TPEPA RSC Advances, 2022, 12, 11996-1	2991	
227	Concurrent Pressure-Induced Spin-State Transitions and Jahn Teller Distortions in MnTe. <i>Chemistry of Materials</i> , 2022 , 34, 3931-3940	9.6	1
226	Strengthening Superhard Materials by Nanostructure Engineering. <i>Journal of Superhard Materials</i> , 2021 , 43, 307-329	0.9	O
225	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. <i>Frontiers in Chemistry</i> , 2021 , 9, 744417	5	2
224	Configuring solid-state batteries to power electric vehicles: a deliberation on technology, chemistry and energy. <i>Chemical Communications</i> , 2021 , 57, 12587-12594	5.8	2
223	High-Pressure and High-Temperature Synthesis and In Situ High-Pressure Synchrotron X-ray Diffraction Study of HfSi. <i>Inorganic Chemistry</i> , 2021 , 60, 15215-15222	5.1	0
222	Operation of large-volume cubic press above 8 GPa and 2500°C with a centimeter-sized cell volume using an optimized hybrid assembly. <i>High Pressure Research</i> , 2021 , 41, 132-141	1.6	O
221	Enhanced Hardness in Transition-Metal Monocarbides via Optimal Occupancy of Bonding Orbitals. <i>ACS Applied Materials & Description of Materials & Descriptio</i>	9.5	3
220	Calibration of Manganin pressure gauge for diamond-anvil cells. <i>Review of Scientific Instruments</i> , 2021 , 92, 033905	1.7	1
219	Mechanochemical synthesis of Li2OHI with enhanced lithium ionic conductivity. <i>Functional Materials Letters</i> , 2021 , 14, 2150012	1.2	
218	Strain-driven structural selection and amorphization during first-order phase transitions in nanocrystalline Ho2O3 under pressure. <i>Physical Review B</i> , 2021 , 103,	3.3	1
217	Experimental Studies on Gas Hydrate-Based CO2 Storage: State-of-the-Art and Future Research Directions. <i>Energy Technology</i> , 2021 , 9, 2100004	3.5	3
216	Novel Nitride Materials Synthesized at High Pressure. <i>Crystals</i> , 2021 , 11, 614	2.3	2

(2020-2021)

215	Composite polymer electrolytes with uniform distribution of ionic liquid-grafted ZIF-90 nanofillers for high-performance solid-state Li batteries. <i>Chemical Engineering Journal</i> , 2021 , 412, 128733	14.7	24
214	Lithium-Rich Anti-perovskite LiOHBr-Based Polymer Electrolytes Enabling an Improved Interfacial Stability with a Three-Dimensional-Structured Lithium Metal Anode in All-Solid-State Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 28108-28117	9.5	4
213	Sound Velocities, Elasticity, and Mechanical Properties of Stoichiometric Submicron Polycrystalline EMoN at High Pressure. <i>Inorganic Chemistry</i> , 2021 , 60, 11897-11906	5.1	O
212	Antiperovskite Ionic Conductor Layer for Stabilizing the Interface of NASICON Solid Electrolyte Against Li Metal in All-Solid-State Batteries**. <i>Batteries and Supercaps</i> , 2021 , 4, 1491-1498	5.6	4
211	Stabilization of NASICON-Type Electrolyte against Li Anode via an Ionic Conductive MOF-Incorporated Adhesive Interlayer. <i>ACS Energy Letters</i> , 2021 , 6, 3141-3150	20.1	8
210	Regulating the lithium metal growth by Li3BO3/Li2OHCl solid-state electrolyte for long-lasting lithium metal stripping-plating. <i>Journal of Power Sources</i> , 2021 , 507, 230299	8.9	1
209	Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate. <i>Chemical Engineering Journal</i> , 2021 , 426, 131279	14.7	2
208	Inhibition of Manganese Dissolution in Mn2O3 Cathode with Controllable Ni2+ Incorporation for High-Performance Zinc Ion Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2009412	15.6	54
207	Optimized Interfaces in Anti-Perovskite Electrolyte-Based Solid-State Lithium Metal Batteries for Enhanced Performance <i>Frontiers in Chemistry</i> , 2021 , 9, 786956	5	О
206	MetalBrganic frameworks for solid-state electrolytes. <i>Energy and Environmental Science</i> , 2020 , 13, 2386	5-3403	71
205	Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. <i>Energy Storage Materials</i> , 2020 , 33, 73-81	19.4	35
204	Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. <i>Applied Physics Letters</i> , 2020 , 116, 101901	3.4	6
203	Compressibility and thermoelasticity of CrN. High Pressure Research, 2020, 40, 423-433	1.6	
202	Strain stiffening, high load-invariant hardness, and electronic anomalies of boron phosphide under pressure. <i>Physical Review B</i> , 2020 , 101,	3.3	14
201	Enhanced Structural Stability of Sb2Se3 via Pressure-Induced Alloying and Amorphization. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 3421-3428	3.8	4
200	Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures. <i>Review of Scientific Instruments</i> , 2020 , 91, 015118	1.7	8
199	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. <i>Nano Letters</i> , 2020 , 20, 4029-4037	11.5	47
198	Neutron diffraction study of crystal structure and temperature driven molecular reorientation in solid ECO. <i>AIP Advances</i> , 2020 , 10, 045301	1.5	2

197	Growth of Millimeter Size B6O Single Crystals in a B-H3BO3 System at High Pressure and High Temperature. <i>Crystal Growth and Design</i> , 2020 , 20, 3732-3736	3.5	2
196	Unraveling microstrain-promoted structural evolution and thermally driven phase transition in cBc2O3 nanocrystals at high pressure. <i>Physical Review B</i> , 2020 , 102,	3.3	1
195	Structural disorder, sublattice melting, and thermo-elastic properties of anti-perovskite Li3OBr under high pressure and temperature. <i>Applied Physics Letters</i> , 2020 , 117, 081904	3.4	3
194	Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCuI with Tetrahedral Units. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1786-1791	16.4	61
193	Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. <i>Chemical Communications</i> , 2020 , 56, 1251-1254	5.8	18
192	Antiperovskites with Exceptional Functionalities. <i>Advanced Materials</i> , 2020 , 32, e1905007	24	40
191	Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. <i>Applied Surface Science</i> , 2020 , 534, 147630	6.7	45
190	Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na3ONO2. Journal of Materials Chemistry A, 2020 , 8, 21265-21272	13	11
189	Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes. <i>Chemistry of Materials</i> , 2020 , 32, 8827-8835	9.6	8
188	Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 33, 432-441	19.4	10
187	Pressure-driven switching of magnetism in layered CrCl. <i>Nanoscale</i> , 2020 , 12, 22935-22944	7.7	2
186	NiMn-Layered Double Hydroxides Chemically Anchored on Ti3C2 MXene for Superior Lithium Ion Storage. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11119-11130	6.1	21
185	Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15204-15208	3.8	8
	Perovskice. Journal of Physical Chemistry C, 2019 , 123, 13204-13206		
184	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3869-3877	6.1	26
184	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. <i>ACS Applied Energy</i>		26
	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3869-3877	6.1	
183	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3869-3877 Phase Stability and Compressibility of 3R-MoN at High Pressure. <i>Scientific Reports</i> , 2019 , 9, 10524 Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries.	6.1 4.9	3

(2016-2019)

179	Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803158	21.8	54
178	Vanadium Diboride (VB) Synthesized at High Pressure: Elastic, Mechanical, Electronic, and Magnetic Properties and Thermal Stability. <i>Inorganic Chemistry</i> , 2018 , 57, 1096-1105	5.1	39
177	Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure. <i>High Pressure Research</i> , 2018 , 38, 136-144	1.6	3
176	Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium. <i>Applied Physics Letters</i> , 2018 , 112, 011901	3.4	10
175	Thermally Induced Anomaly in the Shear Behavior of Magnetite at High Pressure. <i>Physical Review Applied</i> , 2018 , 10,	4.3	2
174	Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide. <i>Physical Review B</i> , 2018 , 97,	3.3	18
173	Magnetic origin of phase stability in cubic EMoN. Applied Physics Letters, 2018, 113, 221901	3.4	6
172	Insights into the Li+ storage mechanism of TiC@C-TiO2 core-shell nanostructures as high performance anodes. <i>Nano Energy</i> , 2018 , 50, 25-34	17.1	35
171	Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover. <i>Nature Communications</i> , 2018 , 9, 1914	17.4	59
170	Stoichiometric ENbN: The Most Incompressible Cubic Transition Metal Mononitride. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1700063	1.3	2
169	Synthesis of Onion-Like EMoN Catalyst for Selective Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19451-19460	3.8	21
168	Ultrastrong Boron Frameworks in ZrB : A Highway for Electron Conducting. <i>Advanced Materials</i> , 2017 , 29, 1604003	24	50
167	Pressure induced polymerization of acetylide anions in CaC and 10 fold enhancement of electrical conductivity. <i>Chemical Science</i> , 2017 , 8, 298-304	9.4	13
166	Giant Pressure-Driven Lattice Collapse Coupled with Intermetallic Bonding and Spin-State Transition in Manganese Chalcogenides. <i>Angewandte Chemie</i> , 2016 , 128, 10506-10509	3.6	6
165	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 10119-10122	3.6	22
164	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9965-8	16.4	155
163	Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15751-15757	16.4	50
162	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study. <i>Inorganic Chemistry</i> , 2016 , 55, 5993-8	5.1	48

161	Antiperovskite LiOCl Superionic Conductor Films for Solid-State Li-Ion Batteries. <i>Advanced Science</i> , 2016 , 3, 1500359	13.6	120
160	Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br). <i>Solid State Ionics</i> , 2016 , 284, 14-19	3.3	58
159	Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN. <i>Crystal Growth and Design</i> , 2016 , 16, 351-358	3.5	38
158	Pressure-induced shift of Tc and structural transition in 1221 type pnictide superconductor Ca0.34Na0.66Fe2As2. <i>AIP Advances</i> , 2016 , 6, 075104	1.5	2
157	Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. <i>Nature Communications</i> , 2016 , 7, 12214	17.4	30
156	Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. <i>Applied Physics Letters</i> , 2016 , 109, 101904	3.4	27
155	Thermal equation of state of silicon carbide. <i>Applied Physics Letters</i> , 2016 , 108, 061906	3.4	21
154	Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2. <i>Journal of Applied Physics</i> , 2016 , 119, 025901	2.5	11
153	Elastic, magnetic and electronic properties of iridium phosphide Ir2P. <i>Scientific Reports</i> , 2016 , 6, 21787	4.9	14
152	Giant Pressure-Driven Lattice Collapse Coupled with Intermetallic Bonding and Spin-State Transition in Manganese Chalcogenides. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10350-3	16.4	24
151	Enhanced Structural Stability and Photo Responsiveness of CH NH SnI Perovskite via Pressure-Induced Amorphization and Recrystallization. <i>Advanced Materials</i> , 2016 , 28, 8663-8668	24	134
150	Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. <i>Journal of Power Sources</i> , 2015 , 293, 735-740	8.9	69
149	A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4815-22	16.4	148
148	Revisit of Pressure-Induced Phase Transition in PbSe: Crystal Structure, and Thermoelastic and Electrical Properties. <i>Inorganic Chemistry</i> , 2015 , 54, 4981-9	5.1	18
147	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1114	4-6.4	226
146	Diamond-cBN alloy: A universal cutting material. <i>Applied Physics Letters</i> , 2015 , 107, 101901	3.4	23
145	Unusual Mott transition in multiferroic PbCrO3. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15320-5	11.5	13
144	The Hardest Superconducting Metal Nitride. <i>Scientific Reports</i> , 2015 , 5, 13733	4.9	61

(2013-2015)

143	High Pressure Phase-Transformation Induced Texture Evolution and Strengthening in Zirconium Metal: Experiment and Modeling. <i>Scientific Reports</i> , 2015 , 5, 12552	4.9	18
142	Hardness, elastic, and electronic properties of chromium monoboride. <i>Applied Physics Letters</i> , 2015 , 106, 221902	3.4	46
141	Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. <i>Scientific Reports</i> , 2015 , 5, 18229	4.9	5
140	Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature. <i>Journal of Physics and Chemistry of Solids</i> , 2014 , 75, 100-104	3.9	18
139	Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 419-26	16.4	139
138	Effect of Pressure and Temperature on Structural Stability of MoS2. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3230-3235	3.8	84
137	Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. <i>Chemical Communications</i> , 2014 , 50, 11520-2	5.8	95
136	Crystal structure and encapsulation dynamics of ice II-structured neon hydrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10456-61	11.5	28
135	Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors. <i>Scientific Reports</i> , 2014 , 4, 7172	4.9	15
134	Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3. <i>Scientific Reports</i> , 2014 , 4, 3700	4.9	13
133	Structural stability of WS2 under high pressure. International Journal of Modern Physics B, 2014, 28, 145	601.68	20
132	Pressure-induced superconductivity in LaFeAsO: The role of anionic height and magnetic ordering. <i>Applied Physics Letters</i> , 2014 , 105, 251902	3.4	6
131	High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3\(\text{MCax}/2OCl\) anti-perovskite halides. <i>Inorganic Chemistry Communication</i> , 2014 , 48, 140-143	3.1	23
130	Pressure induced valence change of Eu in EuFe2As2 at low temperature and high pressures probed by resonant inelastic x-ray scattering. <i>Applied Physics Letters</i> , 2014 , 104, 042601	3.4	11
129	Nuclear forward scattering and first-principles studies of the iron oxide phase Fe4O5. <i>Physical Review B</i> , 2014 , 90,	3.3	7
128	High-temperature neutron diffraction study of deuterated brucite. <i>Physics and Chemistry of Minerals</i> , 2013 , 40, 799-810	1.6	14
127	Pressure-induced amorphization in single-crystal Ta2O5 nanowires: a kinetic mechanism and improved electrical conductivity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13947-53	16.4	49
126	Thermal equation of state and thermodynamic GrEeisen parameter of beryllium metal. <i>Journal of Applied Physics</i> , 2013 , 114, 173509	2.5	7

125	Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. <i>Physical Review B</i> , 2013 , 87,	3.3	98
124	Grain size effects on the compressibility and yield strength of copper. <i>Journal of Physics and Chemistry of Solids</i> , 2013 , 74, 75-79	3.9	9
123	Pressure-induced valence and structural changes in YbMn2Ge2-inelastic X-ray spectroscopy and theoretical investigations. <i>Inorganic Chemistry</i> , 2013 , 52, 832-9	5.1	11
122	New exploration on phase transition and structure of PbS under high pressure and temperature. Journal of Applied Physics, 2013, 113, 043509	2.5	2
121	Elasticity and Equation of State of Perovskite: Implications for the Earth's Lower Mantle. <i>Geophysical Monograph Series</i> , 2013 , 191-196	1.1	2
120	Temperature and pressure effects of multiferroic Bi2NiTiO6 compound. <i>Journal of Applied Physics</i> , 2013 , 113, 143514	2.5	9
119	Phase-transition induced elastic softening and band gap transition in semiconducting PbS at high pressure. <i>Inorganic Chemistry</i> , 2013 , 52, 8638-43	5.1	24
118	Compressive-tensile deformation of nanocrystalline nickel at high pressure and temperature conditions. <i>Applied Physics Letters</i> , 2013 , 103, 043118	3.4	2
117	Characterization of Stress, Pressure, and Temperature in SAm85, a Dia Type High Pressure Apparatus. <i>Geophysical Monograph Series</i> , 2013 , 13-17	1.1	53
116	High pressure synchrotron x-ray diffraction studies of superprotonic transitions in phosphate solid acids. <i>Solid State Ionics</i> , 2012 , 213, 58-62	3.3	10
115	High pressure neutron and synchrotron X-ray diffraction studies of tetragonal LaFeAsO0.9F0.1. <i>High Pressure Research</i> , 2012 , 32, 405-411	1.6	2
114	Synthesis of stoichiometric and bulk CrN through a solid-state ion-exchange reaction. <i>Chemistry - A European Journal</i> , 2012 , 18, 15459-63	4.8	32
113	Constitutive law and flow mechanism in diamond deformation. Scientific Reports, 2012, 2, 876	4.9	25
112	Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides. <i>Chemistry of Materials</i> , 2012 , 24, 3023-3028	9.6	127
111	Comparative studies of yield strength and elastic compressibility between nanocrystalline and bulk cobalt. <i>Journal of Applied Physics</i> , 2012 , 111, 113506	2.5	7
110	Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. <i>Chemical Communications</i> , 2012 , 48, 9840-2	5.8	79
109	Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanideBrganic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7813		48
108	Structural Stability and Compressibility Study for ZnO Nanobelts under High Pressure. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2074-2079	3.8	19

(2010-2012)

107	In situ structure characterization of Pb(Yb1/2Nb1/2)O3-PbTiO3 crystals under high pressure-temperature. <i>Applied Physics Letters</i> , 2012 , 101, 062904	3.4	8
106	Superionic conductivity in lithium-rich anti-perovskites. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15042-7	16.4	322
105	Correlation between superconductivity and structural properties under high pressure of iron pnictide superconductor Ce0.6Y0.4FeAsO0.8F0.2. <i>Applied Physics Letters</i> , 2012 , 100, 052601	3.4	2
104	Experimental invalidation of phase-transition-induced elastic softening in CrN. <i>Physical Review B</i> , 2012 , 86,	3.3	42
103	Pressure-induced disordered substitution alloy in Sb2Te3. <i>Inorganic Chemistry</i> , 2011 , 50, 11291-3	5.1	59
102	Superhard diamond/tungsten carbide nanocomposites. <i>Applied Physics Letters</i> , 2011 , 98, 121914	3.4	17
101	Pressure induced high spin-low spin transition in FeSe superconductor studied by x-ray emission spectroscopy and ab initio calculations. <i>Applied Physics Letters</i> , 2011 , 99, 061913	3.4	12
100	Discovery of the recoverable high-pressure iron oxide Fe4O5. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17281-5	11.5	94
99	Pressure effect on crystal structure and superconductivity of La0.8Th0.2FeAsO. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 208-210	2.5	
98	Comparative studies of constitutive properties of nanocrystalline and bulk iron during compressive deformation. <i>Acta Materialia</i> , 2011 , 59, 3384-3389	8.4	12
97	Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na(1-x)FeAs. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7892-6	16.4	51
96	Pressure induced structural transition and enhancement of superconductivity in Co doped CeFeAsO. <i>Applied Physics Letters</i> , 2011 , 98, 012511	3.4	11
95	Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides. <i>Physical Review B</i> , 2011 , 83,	3.3	48
94	Thermal equations of state and phase relation of PbTiO3: A high P-T synchrotron x-ray diffraction study. <i>Journal of Applied Physics</i> , 2011 , 110, 084103	2.5	21
93	Thermal equation of state of TiC: A synchrotron x-ray diffraction study. <i>Journal of Applied Physics</i> , 2010 , 107, 113517	2.5	7
92	Porous Metal®rganic Frameworks Containing Alkali-Bridged Two-Fold Interpenetration: Synthesis, Gas Adsorption, and Fluorescence Properties. <i>Crystal Growth and Design</i> , 2010 , 10, 1301-130	6 ^{3.5}	41
91	Storage and separation applications of nanoporous metal®rganic frameworks. <i>CrystEngComm</i> , 2010 , 12, 1337-1353	3.3	139
90	Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 10337-46	3.4	50

89	High-pressure neutron diffraction studies at LANSCE. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 99, 585-599	2.6	23
88	Polyaniline Morphology and Detectable Intermediate Aggregates. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 627-634	2.6	15
87	In situ X-ray study of ammonia borane at high pressures. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 11064-11070	6.7	31
86	Experimental and theoretical studies on the elasticity of molybdenum to 12 GPa. <i>Journal of Applied Physics</i> , 2009 , 106, 043506	2.5	14
85	Elastic moduli and strength of nanocrystalline cubic BC2N from x-ray diffraction under nonhydrostatic compression. <i>Physical Review B</i> , 2009 , 79,	3.3	36
84	First-principles prediction of mechanical properties of gamma-boron. <i>Applied Physics Letters</i> , 2009 , 94, 191906	3.4	37
83	High-temperature crystal structures and chemical modifications in RbH(2)PO(4). <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 325401	1.8	20
82	Self-Assembled Polyaniline Nanotubes with Rectangular Cross-Sections. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1600-1606	2.6	17
81	Thermal equation of state of copper studied by high P-T synchrotron x-ray diffraction. <i>Applied Physics Letters</i> , 2009 , 94, 071904	3.4	22
80	Superhard diamondlike BC5: A first-principles investigation. <i>Physical Review B</i> , 2009 , 80,	3.3	23
79	Thermodynamic and mechanical stabilities of tantalum nitride. <i>Physical Review Letters</i> , 2009 , 103, 18550	0 1 .4	65
78	Nanocrystalline tungsten carbide: As incompressible as diamond. <i>Applied Physics Letters</i> , 2009 , 95, 2119	0,64	38
77	Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. <i>Nano Letters</i> , 2008 , 8, 972	-5 1.5	77
76	Thermal equations of state for titanium obtained by high pressureBemperature diffraction studies. <i>Physical Review B</i> , 2008 , 78,	3.3	42
75	Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9626-7	16.4	278
74	Strength measurement of boron suboxide B6O at high pressure and temperature using in situ synchrotron X-ray diffraction. <i>High Pressure Research</i> , 2008 , 28, 423-430	1.6	1
74		3.8	23

71	Phase transition and compressibility in silicon nanowires. <i>Nano Letters</i> , 2008 , 8, 2891-5	11.5	45
70	In situphase transition study of nano- and coarse-grained TiO2under high pressure/temperature conditions. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 125224	1.8	14
69	Study of hardness and deformation of brittle materials with a density functional theory. <i>Journal of Applied Physics</i> , 2008 , 104, 053508	2.5	11
68	Thermal equations of state and melting of lithium deuteride under high pressure. <i>Journal of Applied Physics</i> , 2008 , 103, 093513	2.5	8
67	Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. <i>Journal of Applied Crystallography</i> , 2008 , 41, 1095-1108	3.8	133
66	X-Ray Induced Synthesis of 8H Diamond. <i>Advanced Materials</i> , 2008 , 20, 3303-3307	24	22
65	Experimental constraints on the phase diagram of titanium metal. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2559-2563	3.9	21
64	What is the theoretical density of a nanocrystalline material?. Acta Materialia, 2008, 56, 3663-3671	8.4	39
63	Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. <i>Solid State Communications</i> , 2008 , 145, 250-254	1.6	49
62	Strength weakening by nanocrystals in ceramic materials. <i>Nano Letters</i> , 2007 , 7, 3196-9	11.5	38
61	Comparative studies of compressibility between nanocrystalline and bulk nickel. <i>Applied Physics Letters</i> , 2007 , 90, 043112	3.4	32
60	Thermomechanics of nanocrystalline nickel under high pressure-temperature conditions. <i>Nano Letters</i> , 2007 , 7, 426-32	11.5	31
59	High-temperature phase transitions in CsH2PO4 under ambient and high-pressure conditions: a synchrotron x-ray diffraction study. <i>Journal of Chemical Physics</i> , 2007 , 127, 194701	3.9	26
58	Elasticity of Ephase zirconium. <i>Physical Review B</i> , 2007 , 76,	3.3	28
57	Elastic properties of yttrium-doped BaCeO3 perovskite. <i>Applied Physics Letters</i> , 2007 , 90, 161903	3.4	14
56	Compressibility and pressure-induced amorphization of guest-free melanophlogite: An in-situ synchrotron X-ray diffraction study. <i>American Mineralogist</i> , 2007 , 92, 166-173	2.9	13
55	Pressure-induced cubic to monoclinic phase transformation in erbium sesquioxide Er(2)O(3). <i>Inorganic Chemistry</i> , 2007 , 46, 6164-9	5.1	61
54	Pressure-driven phase transitions in NaBH4: theory and experiments. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13873-6	3.4	32

53	Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies. <i>Physical Review B</i> , 2007 , 75,	3.3	9
52	In situ neutron diffraction study of deuterated portlandite Ca(OD)2 at high pressure and temperature. <i>Physics and Chemistry of Minerals</i> , 2007 , 34, 223-232	1.6	26
51	HighP-TNano-Mechanics of Polycrystalline Nickel. <i>Nanoscale Research Letters</i> , 2007 , 2, 476-91	5	8
50	Impurity effects on the phase transformations and equations of state of zirconium metals. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 2297-2302	3.9	22
49	Inelastic neutron scattering study of hydrogen in d(8)-THFD(2)O ice clathrate. <i>Journal of Chemical Physics</i> , 2007 , 127, 134505	3.9	31
48	Cubic phases of BC2N: A first-principles study. <i>Physical Review B</i> , 2007 , 75,	3.3	40
47	Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition. <i>Applied Physics Letters</i> , 2007 , 91, 201907	3.4	26
46	High-pressure/low-temperature neutron scattering of gas inclusion compounds: progress and prospects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 5727-31	11.5	19
45	MATERIALS SCIENCE: High-Pressure Microscopy. <i>Science</i> , 2006 , 312, 1149-1150	33.3	13
44	Pressure-induced long-range magnetic ordering in cobalt oxide. <i>Physical Review B</i> , 2006 , 74,	3.3	15
43	Fast synthesis method and phase diagram of hydrogen clathrate hydrate. <i>Applied Physics Letters</i> , 2006 , 88, 131909	3.4	73
42	Kinetics of SiC formation during high PII reaction between diamond and silicon. <i>Diamond and Related Materials</i> , 2005 , 14, 1611-1615	3.5	21
41	Pressure-Induced Amorphization and Phase Transformations in ELiAlSiO4. <i>Chemistry of Materials</i> , 2005 , 17, 2817-2824	9.6	35
40	Thermal equations of state of the 即and phases of zirconium. <i>Physical Review B</i> , 2005 , 71,	3.3	93
39	Experimental constraints on the phase diagram of elemental zirconium. <i>Journal of Physics and Chemistry of Solids</i> , 2005 , 66, 1213-1219	3.9	58
38	Morphology-tuned wurtzite-type ZnS nanobelts. <i>Nature Materials</i> , 2005 , 4, 922-7	27	273
37	Effects of defect and pressure on the thermal expansivity of Fe x O. <i>Physics and Chemistry of Minerals</i> , 2005 , 32, 241-247	1.6	9
36	Development of high PII neutron diffraction at LANSCE Leoroidal anvil press, TAP-98, in the HiPPO diffractometer 2005 , 461-474		12

(2002-2005)

35	Variable pressure-temperature neutron diffraction of watite (Fe1MO): Absence of long-range magnetic order to 20GPa. <i>Applied Physics Letters</i> , 2005 , 86, 052505	3.4	19
34	In situ pressure Raman spectroscopy and mechanical stability of superhard boron suboxide. <i>Applied Physics Letters</i> , 2005 , 86, 041911	3.4	21
33	Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions. <i>Review of Scientific Instruments</i> , 2005 , 76, 063909	1.7	8
32	Hard superconducting nitrides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3198-201	11.5	225
31	Thermoelastic and texture behavior of aluminum at high pressure and high temperature investigated by in situ neutron diffraction. <i>Journal of Applied Physics</i> , 2004 , 95, 4645-4650	2.5	21
30	Pressure induced increase of particle size and resulting weakening of elastic stiffness of CeO2 nanocrystals. <i>Applied Physics Letters</i> , 2004 , 85, 124-126	3.4	34
29	A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 13699-702	11.5	133
28	Formation of zirconium metallic glass. <i>Nature</i> , 2004 , 430, 332-5	50.4	41
27	Ultrahard diamond single crystals from chemical vapor deposition. <i>Physica Status Solidi A</i> , 2004 , 201, R25-R27		80
26	Size-Induced Reduction of Transition Pressure and Enhancement of Bulk Modulus of AlN Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 11506-11508	3.4	50
25	Enhancement of fracture toughness in nanostructured diamondBiC composites. <i>Applied Physics Letters</i> , 2004 , 84, 1356-1358	3.4	90
24	Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. <i>Physical Review Letters</i> , 2004 , 93, 125503	7-4	241
23	Hardness and fracture toughness of brittle materials: A density functional theory study. <i>Physical Review B</i> , 2004 , 70,	3.3	60
22	High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. <i>Journal of Physics and Chemistry of Solids</i> , 2003 , 64, 2517-2523	3.9	194
21	Threshold Pressure for Disappearance of Size-Induced Effect in Spinel-Structure Ge3N4 Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 14151-14153	3.4	24
20	Bulk metallic glass gasket for high pressure, in situ x-ray diffraction. <i>Review of Scientific Instruments</i> , 2003 , 74, 3012-3016	1.7	8
19	Critical pressure for weakening of size-induced stiffness in spinel-structure Si3N4 nanocrystals. <i>Applied Physics Letters</i> , 2003 , 83, 3174-3176	3.4	18

17	Growth of boron suboxide crystals in the BB2O3 system at high pressure and high temperature. Journal of Materials Research, 2002, 17, 284-290	2.5	36
16	Hydrogen clusters in clathrate hydrate. <i>Science</i> , 2002 , 297, 2247-9	33.3	696
15	Thermoelastic equation of state of molybdenum. <i>Physical Review B</i> , 2000 , 62, 8766-8776	3.3	63
14	A high PII cell assembly for neutron diffraction up to 10GPa and 1500 K. <i>High Pressure Research</i> , 1999 , 16, 161-177	1.6	32
13	Correction of diffraction optics and PMII determination using thermoelastic equations of state of multiple phases. <i>Journal of Applied Crystallography</i> , 1999 , 32, 218-225	3.8	3
12	Crystal Chemistry and Phase Transitions of Perovskite inPIIXSpace: Data for (KxNa1II)MgF3Perovskites. <i>Journal of Solid State Chemistry</i> , 1998 , 141, 121-132	3.3	31
11	P- V- T Data of hexagonal boron nitride h BN and determination of pressure and temperature using thermoelastic equations of state of multiple phases. <i>High Pressure Research</i> , 1997 , 15, 369-386	1.6	32
10	Thermoelastic equation of state of jadeite NaAlSi2O6: An energy-dispersive Reitveld Refinement Study of low symmetry and multiple phases diffraction. <i>Geophysical Research Letters</i> , 1997 , 24, 5-8	4.9	45
9	A high P-T single-crystal X-ray diffraction study of thermoelasticity of MgSiO3 orthoenstatite. <i>Physics and Chemistry of Minerals</i> , 1995 , 22, 393	1.6	41
8	Perovskite at high P-T conditions: An in situ synchrotron X ray diffraction study of NaMgF3 perovskite. <i>Journal of Geophysical Research</i> , 1994 , 99, 2871-2885		26
7	P-V-T equation of state of (Mg,Fe)SiO3 perovskite: constraints on composition of the lower mantle. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 83, 13-40	2.3	172
6	Mineral physics constraints on the chemical composition of the Earth's lower mantle. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 85, 273-292	2.3	56
5	Thermal expansion and structural distortion of perovskite data for NaMgF3 perovskite. Part I. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 76, 1-16	2.3	140
4	Critical phenomena and phase transition of perovskite ldata for NaMgF3 perovskite. Part II. <i>Physics of the Earth and Planetary Interiors</i> , 1993 , 76, 17-34	2.3	90
3	Large volume high pressure research using the wiggler port at NSLS. <i>High Pressure Research</i> , 1992 , 8, 617-623	1.6	34
2	Thermal expansion of SrZrO3 and BaZrO3 perovskites. <i>Physics and Chemistry of Minerals</i> , 1991 , 18, 294	1.6	65
1	Anti-perovskite materials for energy storage batteries. <i>Informa</i> li/IMaterilly,	23.1	7