Eugene A Sosnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7966095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the modification of barium titanate on the permittivity of its composites with cyanoethyl ester of polyvinyl alcohol. Glass Physics and Chemistry, 2011, 37, 624-628.	0.2	25
2	Effect of chemical modification on structural and energy characteristics of the surface of polyethylene and polyvinyl chloride films. Russian Journal of Applied Chemistry, 2009, 82, 622-629.	0.1	18
3	Synthesis and transformations of Ti-containing structures on the surface of silica gel. Applied Surface Science, 1997, 108, 133-139.	3.1	16
4	New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polymers for Advanced Technologies, 2009, 20, 367-377.	1.6	16
5	Structural-dimensional effects and their application in the "core—nanoshell" systems synthesized by the molecular layering. Russian Chemical Bulletin, 2017, 66, 1939-1962.	0.4	15
6	Influence of chemical modification of the surface of low-density polyethylene on its electret properties. Russian Journal of Applied Chemistry, 2007, 80, 461-465.	0.1	13
7	A new approach to processing electronic diffuse reflectance spectra. Russian Journal of Physical Chemistry A, 2009, 83, 642-648.	0.1	12
8	Hydrolytic stability of the Si–O–Ti bonds in the chemical assembly of titania nanostructures on silica surfaces. Russian Chemical Reviews, 2010, 79, 907-920.	2.5	12
9	Synthesis and properties of polyvinyl chloride films with modified surface. Russian Journal of Applied Chemistry, 2006, 79, 1316-1320.	0.1	7
10	The effect exerted by temperature on the phase formation of titanium oxide layer on silica surface at different stages of molecular layering. Russian Journal of Applied Chemistry, 2010, 83, 1511-1519.	0.1	7
11	Synthesis and in situ gravimetric monitoring of formation of titanium-oxide layer on silica surface. Russian Journal of Applied Chemistry, 2004, 77, 1227-1231.	0.1	6
12	Surface structure and thermal oxidative degradation of the reaction products of polyethylene with PCl3 and VOCl3 vapors. Russian Journal of Applied Chemistry, 2004, 77, 1854-1858.	0.1	6
13	Structure of products formed in chemisorption of titanium tetrachloride by porous silicas. Russian Journal of Applied Chemistry, 2007, 80, 2057-2062.	0.1	5
14	Features of sample preparation and atomic force microscopy study of dispersed nanomaterials. Journal of Surface Investigation, 2008, 2, 699-704.	0.1	5
15	Structure of the products of TiCl4 chemisorption on the surface of porous silica in the process of vapor-phase hydrolysis. Russian Journal of General Chemistry, 2010, 80, 1176-1182.	0.3	5
16	Chemical transformations at the silica surface upon sequential interactions with titanium tetrachloride and ammonia vapors. Russian Journal of General Chemistry, 2015, 85, 2533-2540.	0.3	5
17	Calculation of the Stoichiometric Composition of Nanostructures Synthesized by Molecular Layer Deposition on the Surface of Solid Matrices. Russian Journal of Applied Chemistry, 2005, 78, 367-374.	0.1	4
18	The influence of titanium oxide nanocoatings on the surface quality of glass products for electronic devices. Glass Physics and Chemistry, 2006, 32, 70-74.	0.2	4

Eugene A Sosnov

#	Article	IF	CITATIONS
19	AFM examination of nanolayers synthesised by the molecular layering method on the surface of manufacturing glasses. Semiconductors, 2007, 41, 498-501.	0.2	4
20	Study of high-porous silica surface by atomic force microscopy re]20071018. Journal of Surface Investigation, 2008, 2, 696-698.	0.1	4
21	Influence of the physicochemical treatment procedure on the morphology and properties of the polyvinyl chloride film surface. Russian Journal of Applied Chemistry, 2006, 79, 1857-1861.	0.1	3
22	Influence of chemical modification of the surface of polyethylene with phosphorus, boron, titanium, vanadium, and silicon halides on its vapor permeability. Russian Journal of Applied Chemistry, 2007, 80, 1413-1418.	0.1	3
23	Effect of the substrate nature on the formation of thin titanium dioxide films by molecular layering. Russian Journal of Applied Chemistry, 2008, 81, 2051-2055.	0.1	3
24	Preparation of tin oxide nanocoatings on borosilicate glass by the molecular layering method. Glass Physics and Chemistry, 2008, 34, 534-542.	0.2	3
25	Atomic force microscopic study of variations in the surface morphology of porous silica upon thermal treatment. Colloid Journal, 2012, 74, 380-385.	0.5	3
26	Effect of annealing atmosphere and electron beam pre-irradiation on the properties of SrGa2S4:Eu phosphor films. Optical Materials, 2013, 35, 1109-1111.	1.7	3
27	Growth of Titanium Oxide Nanostructures on γ-Đŀ2Đž3 by Atomic Layer Deposition. Inorganic Materials, 2020, 56, 1234-1241.	0.2	3
28	Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes (a Review): I. History of the Development of the Molecular Layering Method. Russian Journal of Applied Chemistry, 2021, 94, 1022-1037.	0.1	3
29	Formation and properties of the nanocluster structure of iron oxides. Russian Chemical Bulletin, 2006, 55, 1755-1767.	0.4	2
30	AFM application for in situ study of adsorption processes. Semiconductors, 2007, 41, 495-497.	0.2	2
31	The nature of the surface of pyrogenic titanium dioxide according to the optical spectroscopy data. Russian Journal of Physical Chemistry A, 2010, 84, 1028-1032.	0.1	2
32	Electrophosphor brightness enhancement via plasma modification of raw materials. Inorganic Materials, 2010, 46, 1166-1170.	0.2	2
33	Synthesis and protective properties of titanium nitride coatings on willemite. Russian Journal of Applied Chemistry, 2012, 85, 1070-1076.	0.1	2
34	Effect of the chemical modification of the filler surface on the structure and permeability of a composite film based on polyvinyl chloride. Russian Journal of Applied Chemistry, 2015, 88, 110-117.	0.1	2
35	Chemical assembly of a titanium oxide layer on microporous silica. Russian Journal of General Chemistry, 2017, 87, 1786-1793.	0.3	2
36	Atomic Force Microscopy for Studies of Molecular Layering Products. Journal of Surface Investigation, 2018, 12, 1310-1322.	0.1	2

Eugene A Sosnov

#	Article	IF	CITATIONS
37	Properties of Polytetrafluoroethylene Films Modified with Titanium and Phosphorus Oxide Structures. Russian Journal of Applied Chemistry, 2019, 92, 1128-1134.	0.1	2
38	Thermal Transformations of Titanium Oxochloride Nanostructures on Silica Surface. Russian Journal of Applied Chemistry, 2005, 78, 859-864.	0.1	1
39	Organic-inorganic cross-linked structures prepared from reactive n-butyl methacrylate-3-(trimethoxysilyl)propyl methacrylate copolymers. Russian Journal of Applied Chemistry, 2007, 80, 93-101.	0.1	1
40	Antimicrobial polymeric composite films for medical use. Russian Journal of Applied Chemistry, 2008, 81, 128-130.	0.1	1
41	Effect of the metallic modifier is nature on the surface microstructure of the phenolic carboplastic-steel interface. Journal of Friction and Wear, 2008, 29, 470-476.	0.1	1
42	METHOD OF ESDR-SPECTRA PROCESSING FOR THE CHARACTERIZATION OF NANOSTRUCTURES AT THE SOLID'S SURFACE. Integrated Ferroelectrics, 2008, 103, 41-51.	0.3	1
43	Temperature effect on polymorphic transformations in silica matrix–titania coating systems. Inorganic Materials, 2011, 47, 495-501.	0.2	1
44	Changes in electrical and optical properties of polyimide films under the action of accelerated electrons. Russian Journal of Applied Chemistry, 2011, 84, 1276-1280.	0.1	1
45	Effect of a Thermal-Vacuum Treatment and X-Ray Radiation on the Morphology and Electrical Properties of Titanium Oxide Nanocoatings. Russian Journal of Applied Chemistry, 2019, 92, 883-892.	0.1	1
46	Effect of Composition and Structure of Element Oxide Nanostructures Grafted at Polyethylene Film Surface on Electret Characteristics of thePolymer. Russian Journal of General Chemistry, 2021, 91, 1075-1083.	0.3	1
47	Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. Russian Journal of Applied Chemistry, 2021, 94, 1189-1215.	0.1	1
48	Phase Transitions in the Bulk and on Surfaces of Titanium Dioxide during Heat Treatment. Russian Journal of Physical Chemistry A, 2022, 96, 179-189.	0.1	1
49	Surface morphology of antifrictional polymer materials: Experience in atomic force and electron microscopy. Russian Journal of General Chemistry, 2010, 80, 2192-2200.	0.3	0
50	Synthesis and properties of a zinc cadmium sulfide based low-voltage cathodoluminescent phosphors. Inorganic Materials, 2011, 47, 697-699.	0.2	0
51	Scanning probe microscopy estimation of the wear resistance of the surface of a modified PVC film. Russian Metallurgy (Metally), 2017, 2017, 312-318.	0.1	0
52	Experimental Assessment of the Structural Parameters of Highly Porous Silica: Probe Microscopy Data. Glass Physics and Chemistry, 2019, 45, 365-371.	0.2	0
53	Influence of Structure of Chemically Grafted onto Polyethylene Surface Two-Component Titanium-Phosphoroxide Nanostructures on the Properties of Composite Material. Russian Journal of Applied Chemistry, 2020, 93, 1192-1201.	0.1	0