CTR Russell

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7966033/c-t-r-russell-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,32O papers

63,278 citations

118 h-index

192 g-index

1,424 ext. papers

68,451 ext. citations

6.8 avg, IF

7.44 L-index

#	Paper	IF	Citations
1320	Solitary Magnetic Structures Developed From Gyro-Resonance With Solar Wind Ions at Mars and Earth. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	O
1319	Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements. <i>Physics of Plasmas</i> , 2022 , 29, 012906	2.1	1
1318	Turbulence-driven magnetic reconnection and the magnetic correlation length: Observations from Magnetospheric Multiscale in Earth's magnetosheath. <i>Physics of Plasmas</i> , 2022 , 29, 012302	2.1	5
1317	Lower hybrid drift wave motion at a dayside magnetopause x-line with energy conversion dominated by a parallel electric field. <i>Physics of Plasmas</i> , 2022 , 29, 012905	2.1	2
1316	Magnetic Flux Transport Identification of Active Reconnection: MMS Observations in Earth Magnetosphere. <i>Astrophysical Journal Letters</i> , 2022 , 926, L34	7.9	O
1315	Protoplanet Vesta and HED Meteorites 2022 , 41-52		1
1314	Carbon and Organic Matter on Ceres 2022 , 121-133		
1313	Geomorphology of Ceres 2022 , 143-158		
1312	Origin and Dynamical Evolution of the Asteroid Belt 2022 , 227-249		Ο
1311	Ceresl&urface Composition 2022, 105-120		
1310	Electron-Only Reconnection as a Transition Phase From Quiet Magnetotail Current Sheets to Traditional Magnetotail Reconnection. <i>Journal of Geophysical Research: Space Physics</i> , 2022 , 127,	2.6	2
1309	Collisional Evolution of the Main Belt as Recorded by Vesta 2022 , 250-261		
1308	Ammonia on Ceres 2022 , 134-142		
1307	Geophysics of Vesta and Ceres 2022 , 173-196		
1306	Formation of Main Belt Asteroids 2022 , 199-211		О
1305	The Surface Composition of Vesta 2022 , 81-104		
1304	Remote Observations of the Main Belt 2022 , 3-25		

1303 Geomorphology of Vesta **2022**, 67-80

1302 Isotopic Constraints on the Formation of the Main Belt 2022 , 212-226	
1301 CeresInternal Evolution 2022 , 159-172	
1300 Exploring Vesta and Ceres 2022 , 26-38	
The Internal Evolution of Vesta 2022 , 53-66	
Statistical study of lightning-generated whistler-mode waves observed by Venus Express. <i>Icarus</i> , 2022 , 380, 114993	3.8
A young age of formation of Rheasilvia basin on Vesta from floor deformation patterns and crate counts. <i>Meteoritics and Planetary Science</i> , 2022 , 57, 22-47	2.8 1
ULF Wave-Induced Ion Pitch Angle Evolution in the Dayside Outer Magnetosphere. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9
Electron energization and thermal to non-thermal energy partition during earth's magnetotail reconnection. <i>Physics of Plasmas</i> , 2022 , 29, 052904	2.1 1
The EDR inflow region of a reconnecting current sheet in the geomagnetic tail. <i>Physics of Plasma</i> 2022 , 29, 052903	s, 2.1 1
Determining the Relative Cratering Ages of Regions of Psychell Surface. <i>Space Science Reviews</i> , 2022 , 218, 1	7.5 0
Electron-Only Reconnection as a Transition From Quiet Current Sheet to Standard Reconnection Earth's Magnetotail: Particle-In-Cell Simulation and Application to MMS Data. <i>Geophysical Resear Letters</i> , 2022 , 49,	
Structure of a Perturbed Magnetic Reconnection Electron Diffusion Region in the Earth's Magnetotail. <i>Physical Review Letters</i> , 2021 , 127, 215101	7.4 5
Mapping MMS Observations of Solitary Waves in Earth's Magnetic Field. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029389	2.6
Large-Scale Parallel Electric Field Colocated in an Extended Electron Diffusion Region During the Magnetosheath Magnetic Reconnection. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL094879	
Spatial evolution of magnetic reconnection diffusion region structures with distance from the X-line. <i>Physics of Plasmas</i> , 2021 , 28, 122901	2.1 2
SECS Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029839	2.6 1
Thin Current Sheet Behind the Dipolarization Front. <i>Journal of Geophysical Research: Space Physic</i> 2021 , 126, e2021JA029518	cs, 2.6 1

1285	Magnetic Flux Circulation in the Saturnian Magnetosphere as Constrained by Cassini Observations in the Inner Magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029304	2.6	2	
1284	Formation of Ejecta and Dust Pond Deposits on Asteroid Vesta. <i>Journal of Geophysical Research E: Planets</i> , 2021 , 126, e2021JE006873	4.1		
1283	Effect of the Electric Field on the Agyrotropic Electron Distributions. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091437	4.9	1	
1282	MMS Observations of the Multiscale Wave Structures and Parallel Electron Heating in the Vicinity of the Southern Exterior Cusp. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2019JA02769	3 .6	3	
1281	Large Amplitude Electrostatic Proton Plasma Frequency Waves in the Magnetospheric Separatrix and Outflow Regions During Magnetic Reconnection. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL09	102 86	2	
1280	Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices. <i>Space Weather</i> , 2021 , 19, e2020SW002526	3.7	6	
1279	Configuration of the Earth Magnetotail Current Sheet. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL	. Q9 21!	534	
1278	Determining EMIC Wave Vector Properties Through Multi-Point Measurements: The Wave Curl Analysis. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028922	2.6	2	
1277	Temporal Evolution of Flux Rope/Tube Entanglement in 3-D Hall MHD Simulations. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028698	2.6	1	
1276	Electron Trapping in Magnetic Mirror Structures at the Edge of Magnetopause Flux Ropes. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029182	2.6	1	
1275	Energy Transfer Between Hot Protons and Electromagnetic Ion Cyclotron Waves in Compressional Pc5 Ultra-low Frequency Waves. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA0289	912	2	
1274	MMS Observations of Field Line Resonances Under Disturbed Solar Wind Conditions. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028936	2.6	O	
1273	Compositional control on impact crater formation on mid-sized planetary bodies: Dawn at Ceres and Vesta, Cassini at Saturn. <i>Icarus</i> , 2021 , 359, 114343	3.8	12	
1272	A Multi-Instrument Study of a Dipolarization Event in the Inner Magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029294	2.6		
1271	Statistical Survey of Collisionless Dissipation in the Terrestrial Magnetosheath. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA029000	2.6	4	
1270	MMS Observations of Energized He+ Pickup Ions at Quasiperpendicular Shocks. <i>Astrophysical Journal</i> , 2021 , 913, 112	4.7	2	
1269	Microscale Processes Determining Macroscale Evolution of Magnetic Flux Tubes along Earth Magnetopause. <i>Astrophysical Journal</i> , 2021 , 914, 26	4.7	1	
1268	The Brittle Boulders of Dwarf Planet Ceres. <i>Planetary Science Journal</i> , 2021 , 2, 111	2.9	2	

1267	Comparison of MMS Observations of Foreshock Bubbles With a Global Hybrid Simulation. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028848	2.6	1	
1266	Replenishment of Near-Surface Water Ice by Impacts Into Ceres' Volatile-Rich Crust: Observations by Dawn's Gamma Ray and Neutron Detector. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL094223	4.9	О	
1265	Electrostatic Solitary Waves in the Earth's Bow Shock: Nature, Properties, Lifetimes, and Origin. Journal of Geophysical Research: Space Physics, 2021 , 126, e2021JA029357	2.6	7	
1264	Comparative Analysis of the Various Generalized Ohm's Law Terms in Magnetosheath Turbulence as Observed by Magnetospheric Multiscale. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, 2020JA028447	2.6	4	
1263	The Boulder Population of Asteroid 4 Vesta: Size-Frequency Distribution and Survival Time. <i>Earth and Space Science</i> , 2021 , 8, e2019EA000941	3.1	5	
1262	Observations of Mirror Mode Structures in the Dawn-Side Magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028649	2.6	Ο	
1261	The Dynamics of a High Mach Number Quasi-perpendicular Shock: MMS Observations. <i>Astrophysical Journal</i> , 2021 , 908, 40	4.7	11	
1260	Electron-Only Tail Current Sheets and Their Temporal Evolution. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091364	4.9	8	
1259	MMS Observations of Reconnection Separatrix Region in the Magnetotail at Different Distances From the Active Neutral X-Line. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA0286	5 3 4 ⁶	1	
1258	In Situ Evidence of Ion Acceleration between Consecutive Reconnection Jet Fronts. <i>Astrophysical Journal</i> , 2021 , 908, 73	4.7	2	
1257	Statistical Characteristics of Field-Aligned Currents in the Plasma Sheet Boundary Layer. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028319	2.6	4	
1256	Two-Dimensional Velocity of the Magnetic Structure Observed on July 11, 2017 by the Magnetospheric Multiscale Spacecraft. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020	J 2 628	37 0 5	
1255	An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028903	2.6	3	
1254	Observation of Nonuniform Energy Dissipation in the Electron Diffusion Region of Magnetopause Reconnection. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091928	4.9	1	
1253	Upper-Hybrid Waves Driven by Meandering Electrons Around Magnetic Reconnection X Line. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093164	4.9	3	
1252	Nonlinear Magnetic Gradients and Complete Magnetic Geometry From Multispacecraft Measurements. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028846	2.6	1	
1251	Superposed Epoch Analysis of Nighttime Magnetic Perturbation Events Observed in Arctic Canada. Journal of Geophysical Research: Space Physics, 2021 , 126, e2021JA029465	2.6	0	
1250	High Mach Number Quasi-Perpendicular Shocks: Spatial Versus Temporal Structure. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029287	2.6	O	

1249	Anomalous Reconnection Layer at Earth's Dayside Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029678	2.6	1
1248	The surface of (4) Vesta in visible light as seen by Dawn/VIR. <i>Astronomy and Astrophysics</i> , 2021 , 653, A11	§ .1	
1247	Off-Equatorial Minima Effects on ULF Wave-Ion Interaction in the Dayside Outer Magnetosphere. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095648	4.9	3
1246	Shock Mach Number Estimates Using Incomplete Measurements. <i>Journal of Geophysical Research:</i> Space Physics, 2021 , 126, e2021JA029519	2.6	1
1245	Venus lightning: Estimation of charge and dimensions of charge regions for lightning initiation. <i>Icarus</i> , 2021 , 365, 114473	3.8	1
1244	Thermal inertia of Occator's faculae on Ceres. <i>Planetary and Space Science</i> , 2021 , 205, 105285	2	
1243	The unique spectral and geomorphological characteristics of pitted impact deposits associated with Marcia crater on Vesta. <i>Icarus</i> , 2021 , 369, 114633	3.8	0
1242	Solitary Magnetic Structures at Quasi-Parallel Collisionless Shocks: Formation. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090800	4.9	6
1241	Comparative Study of Electric Currents and Energetic Particle Fluxes in a Solar Flare and Earth Magnetospheric Substorm. <i>Astrophysical Journal</i> , 2021 , 923, 151	4.7	О
1240	Observation of an inertial-range energy cascade within a reconnection jet in the Earth magnetotail. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2020 , 500, L6-L10	4.3	2
1239	Physical Implication of Two Types of Reconnection Electron Diffusion Regions With and Without Ion-Coupling in the Magnetotail Current Sheet. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088761	4.9	4
1238	Magnetospheric Multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms. <i>Annales Geophysicae</i> , 2020 , 38, 123-135	2	1
1237	Distribution and Properties of Magnetic Flux Ropes in Titan's Ionosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027570	2.6	3
1236	Formation and Evolution of the Large-Scale Magnetic Fields in Venus' Ionosphere: Results From a Three Dimensional Global Multispecies MHD Model. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087	7 \$ 93	6
1235	Observations of the Source Region of Whistler Mode Waves in Magnetosheath Mirror Structures. Journal of Geophysical Research: Space Physics, 2020 , 125, e2019JA027488	2.6	5
1234	In Situ Observation of Hall Magnetohydrodynamic Cascade in Space Plasma. <i>Physical Review Letters</i> , 2020 , 124, 225101	7.4	26
1233	Characteristics of Minor Ions and Electrons in Flux Transfer Events Observed by the Magnetospheric Multiscale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JAC) 27 778	36
1232	Overshoot dependence on the cross-shock potential. <i>Annales Geophysicae</i> , 2020 , 38, 17-26	2	3

(2020-2020)

1231	2020 , 47, e2019GL085141	4.9	23
1230	Cerespartial differentiation: undifferentiated crust mixing with a water-rich mantle. <i>Astronomy and Astrophysics</i> , 2020 , 633, A117	5.1	12
1229	Extension of the Electron Diffusion Region in a Guide Field Magnetic Reconnection at Magnetopause. <i>Astrophysical Journal Letters</i> , 2020 , 892, L5	7.9	6
1228	Cluster and MMS Simultaneous Observations of Magnetosheath High Speed Jets and Their Impact on the Magnetopause. <i>Frontiers in Astronomy and Space Sciences</i> , 2020 , 6,	3.8	12
1227	Latitudinal Dependence of the Kelvin-Helmholtz Instability and Beta Dependence of Vortex-Induced High-Guide Field Magnetic Reconnection. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027333	2.6	4
1226	MMS Observations of Accelerated Interstellar Pickup He+ Ions at an Interplanetary Shock. <i>Astrophysical Journal</i> , 2020 , 897, 6	4.7	1
1225	Statistics of Kinetic Dissipation in the Earth's Magnetosheath: MMS Observations. <i>Physical Review Letters</i> , 2020 , 124, 255101	7.4	22
1224	Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer. <i>Physical Review Letters</i> , 2020 , 125, 025103	7.4	13
1223	Ceres observed at low phase angles by VIR-Dawn. Astronomy and Astrophysics, 2020, 634, A39	5.1	5
1222	Generation of Turbulence in Kelvin-Helmholtz Vortices at the Earth's Magnetopause: Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2	079 ⁶ JA0	27595
1222	Generation of Turbulence in Kelvin-Helmholtz Vortices at the Earth's Magnetopause: Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. <i>Journal of Plasma Physics</i> , 2020 , 86,	079 ⁹ A0	9
	Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent		
1221	Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. <i>Journal of Plasma Physics</i> , 2020 , 86, Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation	2.7	
1221	Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. <i>Journal of Plasma Physics</i> , 2020 , 86, Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2019JE006296 Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations.	2.7	9 27
1221 1220 1219	Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. <i>Journal of Plasma Physics</i> , 2020 , 86, Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2019JE006296 Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027337 Crustal and time-varying magnetic fields at the InSight landing site on Mars. <i>Nature Geoscience</i> ,	2.7 4.1 2.6	9 27 0
1221 1220 1219 1218	Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. <i>Journal of Plasma Physics</i> , 2020 , 86, Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2019JE006296 Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027337 Crustal and time-varying magnetic fields at the InSight landing site on Mars. <i>Nature Geoscience</i> , 2020 , 13, 199-204 Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow	2.7 4.1 2.6	9 27 0
1221 1220 1219 1218	Magnetospheric Multiscale Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2 On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath. Journal of Plasma Physics, 2020, 86, Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006296 Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027337 Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204 Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock. Physical Review Letters, 2020, 124, 065101 Asymmetric Reconnection Within a Flux Rope-Type Dipolarization Front. Journal of Geophysical	2.7 4.1 2.6 18.3	9 27 0 42 17

1213	Contribution of Anisotropic Electron Current to the Magnetotail Current Sheet as a Function of Location and Plasma Conditions. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027	² 251	9
1212	Electrostatic Turbulence and Debye-scale Structures in Collisionless Shocks. <i>Astrophysical Journal Letters</i> , 2020 , 889, L9	7.9	22
1211	Polynomial Reconstruction of the Reconnection Magnetic Field Observed by Multiple Spacecraft. Journal of Geophysical Research: Space Physics, 2020 , 125, e2019JA027481	2.6	18
1210	Fracture geometry and statistics of CeresIfloor fractures. <i>Planetary and Space Science</i> , 2020 , 187, 10495	5 <u>5</u>	3
1209	Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027665	2.6	9
1208	In Situ Measurement of Curvature of Magnetic Field in Turbulent Space Plasmas: A Statistical Study. <i>Astrophysical Journal Letters</i> , 2020 , 893, L25	7.9	6
1207	Electron Mixing and Isotropization in the Exhaust of Asymmetric Magnetic Reconnection With a Guide Field. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087159	4.9	1
1206	Energy Flux Densities near the Electron Dissipation Region in Asymmetric Magnetopause Reconnection. <i>Physical Review Letters</i> , 2020 , 125, 265102	7.4	7
1205	Organic Material on Ceres: Insights from Visible and Infrared Space Observations. <i>Life</i> , 2020 , 11,	3	4
1204	Direct Measurement of the Solar-wind Taylor Microscale Using MMS Turbulence Campaign Data. <i>Astrophysical Journal</i> , 2020 , 899, 63	4.7	9
1203	Scaling and Anisotropy of Solar Wind Turbulence at Kinetic Scales during the MMS Turbulence Campaign. <i>Astrophysical Journal</i> , 2020 , 903, 127	4.7	4
1202	Evolution of the Earth Magnetosheath Turbulence: A Statistical Study Based on MMS Observations. <i>Astrophysical Journal Letters</i> , 2020 , 898, L43	7.9	8
1201	Electron Energization and Energy Dissipation in Microscale Electromagnetic Environments. <i>Astrophysical Journal Letters</i> , 2020 , 899, L31	7.9	6
12 00	Observation of Energy Conversion Near the X-line in Asymmetric Guide-field Reconnection. <i>Astrophysical Journal Letters</i> , 2020 , 895, L10	7.9	1
1199	Sequential Observations of Flux Transfer Events, Poleward-Moving Auroral Forms, and Polar Cap Patches. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027674	2.6	3
1198	Temporal Evolution of Flux Tube Entanglement at the Magnetopause as Observed by the MMS Satellites. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL090314	4.9	3
1197	Initial results from the InSight mission on Mars. <i>Nature Geoscience</i> , 2020 , 13, 183-189	18.3	155
1196	The Solar Orbiter magnetometer. <i>Astronomy and Astrophysics</i> , 2020 , 642, A9	5.1	51

The surface of (1) Ceres in visible light as seen by Dawn/VIR. <i>Astronomy and Astrophysics</i> , 2020 , 64	2, A74 _{5.1}	5
1194 Ceres: Astrobiological Target and Possible Ocean World. <i>Astrobiology</i> , 2020 , 20, 269-291	3.7	27
Electron Bernstein waves driven by electron crescents near the electron diffusion region. <i>Nature Communications</i> , 2020 , 11, 141	17.4	14
Comparison of the Flank Magnetopause at Near-Earth and Lunar Distances: MMS and ARTEMIS Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028406	2.6	1
Flux Transfer Event With an Electron-Scale Substructure Observed by the Magnetospheric Multiscale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027308	2.6	0
Observations of Electron-Only Magnetic Reconnection Associated With Macroscopic Magnetic Flu Ropes. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089659	x 4·9	7
Multiscale Coupling During Magnetopause Reconnection: Interface Between the Electron and Ion Diffusion Regions. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027985	2.6	3
Energetic Ion Reflections at Interplanetary Shocks: First Observations From ARTEMIS. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028174	2.6	1
Propagating and Dynamic Properties of Magnetic Dips in the Dayside Magnetosheath: MMS Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA026736	2.6	9
1186 Kinetic-scale Flux Rope in the Magnetosheath Boundary Layer. <i>Astrophysical Journal</i> , 2020 , 897, 13	3 7 4.7	8
The varied sources of faculae-forming brines in Ceres' Occator crater emplaced via hydrothermal brine effusion. <i>Nature Communications</i> , 2020 , 11, 3680	17.4	23
Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. <i>Nature Communications</i> , 2020 , 11, 3679	17.4	13
Evidence of non-uniform crust of Ceres from Dawn high-resolution gravity data. <i>Nature Astronom</i> , 2020 , 4, 748-755	ny _{12.1}	19
Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. <i>Nature Astronomy</i> , 2020 , 4, 786-793	12.1	36
Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. <i>Nature Astronomy</i> , 2020 , 4, 741-747	12.1	34
Post-impact cryo-hydrologic formation of small mounds and hills in Ceres Occator crater. <i>Nature Geoscience</i> , 2020 , 13, 605-610	18.3	9
Determination of the Configurations of Boundaries in Space. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028163	ce _{2.6}	1
1178 The BepiColomboMio Magnetometer en Route to Mercury. <i>Space Science Reviews</i> , 2020 , 216, 1	7.5	9

1177	The science mission of SpaceIL® Beresheet lander. Planetary and Space Science, 2020, 194, 105115	2	1
1176	Turbulent Wavefield Morphology and Ion Scattering in the Magnetosheath. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089613	4.9	1
1175	Magnetotail reconnection onset caused by electron kinetics with a strong external driver. <i>Nature Communications</i> , 2020 , 11, 5049	17.4	37
1174	The Origin of Observed Magnetic Variability for a Sol on Mars From InSight. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2020JE006505	4.1	5
1173	Solar Wind Conditions During the First 42 Months of Magnetospheric Multiscale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028207	2.6	
1172	Flux Ropes Are Born in Pairs: An Outcome of Interlinked, Reconnecting Flux Tubes. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087620	4.9	9
1171	MMS Observation of Secondary Magnetic Reconnection Beside Ion-Scale Flux Rope at the Magnetopause. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089075	4.9	5
1170	Electron Inflow Velocities and Reconnection Rates at Earth's Magnetopause and Magnetosheath. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089082	4.9	11
1169	Multisatellite MMS Analysis of Electron Holes in the Earth's Magnetotail: Origin, Properties, Velocity Gap, and Transverse Instability. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e202	20 3 802	8066
1168	High Thermal Inertia Zones on Ceres From Dawn Data. <i>Journal of Geophysical Research E: Planets</i> , 2020 , 125, e2018JE005733	4.1	7
1167	Dissipation of Earthward Propagating Flux Rope Through Re-reconnection with Geomagnetic Field: An MMS Case Study. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 7477-7493	2.6	6
1166	Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 7442-7458	2.6	16
1165	Four-Spacecraft Measurements of the Shape and Dimensionality of Magnetic Structures in the Near-Earth Plasma Environment. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 6850-6868	2.6	5
1164	Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. <i>Nature Geoscience</i> , 2019 , 12, 797-801	18.3	10
1163	Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause. <i>Geophysical Research Letters</i> , 2019 , 46, 1937-1946	4.9	23
1162	The Hall Electric Field in Earth's Magnetotail Thin Current Sheet. <i>Journal of Geophysical Research:</i> Space Physics, 2019 , 124, 1052-1062	2.6	20
1161	Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability. <i>Physical Review Letters</i> , 2019 , 122, 035102	7.4	43
1160	Spectrophotometric modeling and mapping of Ceres. <i>Icarus</i> , 2019 , 322, 144-167	3.8	18

1159	Observations of an Electron Diffusion Region in Symmetric Reconnection with Weak Guide Field. Astrophysical Journal, 2019 , 870, 34	4.7	53
1158	Observational Evidence of Magnetic Reconnection in the Terrestrial Bow Shock Transition Region. <i>Geophysical Research Letters</i> , 2019 , 46, 562-570	4.9	28
1157	Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 1173-1186	2.6	25
1156	Prolonged KelvinHelmholtz Waves at Dawn and Dusk Flank Magnetopause: Simultaneous Observations by MMS and THEMIS. <i>Astrophysical Journal</i> , 2019 , 875, 57	4.7	6
1155	Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth Magnetosheath. <i>Astrophysical Journal Letters</i> , 2019 , 877, L37	7.9	52
1154	Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields. <i>Geophysical Research Letters</i> , 2019 , 46, 6230-6238	4.9	20
1153	Slurry extrusion on Ceres from a convective mud-bearing mantle. <i>Nature Geoscience</i> , 2019 , 12, 505-509	18.3	26
1152	EMIC Waves in the Outer Magnetosphere: Observations of an Off-Equator Source Region. <i>Geophysical Research Letters</i> , 2019 , 46, 5707-5716	4.9	16
1151	Electron Sublayers and the Associated Magnetic Topologies in the Inner Low-Latitude Boundary Layer. <i>Geophysical Research Letters</i> , 2019 , 46, 5746-5753	4.9	1
1150	Carriers of the Field-Aligned Currents in the Plasma Sheet Boundary Layer: An MMS Multicase Study. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 2873	2.6	5
1149	Whistler Waves Driven by Field-Aligned Streaming Electrons in the Near-Earth Magnetotail Reconnection. <i>Geophysical Research Letters</i> , 2019 , 46, 5045-5054	4.9	11
1148	Large-Amplitude Electromagnetic Ion Cyclotron Waves and Density Fluctuations in the Flank of the Earth's Magnetosheath. <i>Geophysical Research Letters</i> , 2019 , 46, 4545-4553	4.9	7
1147	The Dominant Role of Energetic Ions in Solar Wind Interaction With the Moon. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 3176-3192	2.6	4
1146	Magnetospheric Multiscale Observations of ULF Waves and Correlated Low-Energy Ion Monoenergetic Acceleration. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 2788	2.6	4
1145	(STEREO) Observations of Stream Interaction Regions in 2007 - 2016: Relationship with Heliospheric Current Sheets, Solar Cycle Variations, and Dual Observations. <i>Solar Physics</i> , 2019 , 294, 1	2.6	27
1144	Fluidized Appearing Ejecta on Ceres: Implications for the Mechanical Properties, Frictional Properties, and Composition of its Shallow Subsurface. <i>Journal of Geophysical Research E: Planets</i> , 2019 , 124, 1819-1839	4.1	11
1143	Crescent-Shaped Electron Distributions at the Nonreconnecting Magnetopause: Magnetospheric Multiscale Observations. <i>Geophysical Research Letters</i> , 2019 , 46, 3024-3032	4.9	11
1142	Magnetospheric Multiscale Observation of Kinetic Signatures in the Alfv® Vortex. <i>Astrophysical Journal Letters</i> , 2019 , 871, L22	7.9	19

1141	Anisotropic Electron Distributions and Whistler Waves in a Series of the Flux Transfer Events at the Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 1753-1769	2.6	13
1140	Direct evidence of nonstationary collisionless shocks in space plasmas. <i>Science Advances</i> , 2019 , 5, eaau9	912463	18
1139	High-Frequency Wave Generation in Magnetotail Reconnection: Linear Dispersion Analysis. <i>Geophysical Research Letters</i> , 2019 , 46, 4089-4097	4.9	21
1138	In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection. <i>Physical Review E</i> , 2019 , 99, 043204	2.4	9
1137	A Global Inventory of Ice-Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. <i>Journal of Geophysical Research E: Planets</i> , 2019 , 124, 1650-1689	4.1	26
1136	On the Kinetic Nature of Solar Wind Discontinuities. <i>Geophysical Research Letters</i> , 2019 , 46, 1185-1194	4.9	15
1135	Observations of Magnetic Reconnection in the Transition Region of Quasi-Parallel Shocks. <i>Geophysical Research Letters</i> , 2019 , 46, 1177-1184	4.9	31
1134	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. <i>Journal of Geophysical Research E: Planets</i> , 2019 , 124, 1512	4.1	8
1133	Spectral analysis of the Cerean geological unit crater central peak material as an indicator of subsurface mineral composition. <i>Icarus</i> , 2019 , 318, 75-98	3.8	4
1132	Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. <i>Icarus</i> , 2019 , 318, 42-55	3.8	28
1131	Tectonic analysis of fracturing associated with occator crater. <i>Icarus</i> , 2019 , 320, 49-59	3.8	14
1130	The spectral parameter maps of Ceres from NASA/DAWN VIR data. <i>Icarus</i> , 2019 , 318, 14-21	3.8	7
1129	The mineralogy of Ceres[Nawish quadrangle. <i>Icarus</i> , 2019 , 318, 195-204	3.8	1
1128	Substorm-Related Near-Earth Reconnection Surge: Combining Telescopic and Microscopic Views. Geophysical Research Letters, 2019 , 46, 6239-6247	4.9	1
1127	Electron Vorticity Indicative of the Electron Diffusion Region of Magnetic Reconnection. <i>Geophysical Research Letters</i> , 2019 , 46, 6287-6296	4.9	13
1126	Modeling Wind-Driven Ionospheric Dynamo Currents at Mars: Expectations for InSight Magnetic Field Measurements. <i>Geophysical Research Letters</i> , 2019 , 46, 5083-5091	4.9	10
1125	Velocity Rotation Events in the Outer Magnetosphere Near the Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 4137-4156	2.6	2
1124	Continent-Wide R1/R2 Current System and Ohmic Losses by Broad Dipolarization-Injection Fronts. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 4064-4082	2.6	5

1123	Landslides on Ceres: Diversity and Geologic Context. <i>Journal of Geophysical Research E: Planets</i> , 2019 , 124, 3329-3343	4.1	10	
1122	Nonideal Electric Field Observed in the Separatrix Region of a Magnetotail Reconnection Event. <i>Geophysical Research Letters</i> , 2019 , 46, 10744-10753	4.9	8	
1121	Energy Conversion and Electron Acceleration in the Magnetopause Reconnection Diffusion Region. <i>Geophysical Research Letters</i> , 2019 , 46, 10274-10282	4.9	6	
1120	Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple-Instrument Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 7459-7476	2.6	21	
1119	The Solar Clock. Reviews of Geophysics, 2019, 57, 1129-1145	23.1	2	
1118	Origin of two-band chorus in the radiation belt of Earth. <i>Nature Communications</i> , 2019 , 10, 4672	17.4	29	
1117	Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 9040-9057	2.6	10	
1116	Electron-scale Vertical Current Sheets in a Bursty Bulk Flow in the Terrestrial Magnetotail. <i>Astrophysical Journal Letters</i> , 2019 , 872, L26	7.9	11	
1115	Sub-ion-scale Dynamics of the Ion Diffusion Region in the Magnetotail: MMS Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 7898-7911	2.6	2	
1114	Reply to: Comment on The Dominant Role of Energetic Ions in Solar Wind Interaction With the Moon By Poppe. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 6933-6937	2.6	1	
1113	Electron Mirror-mode Structure: Magnetospheric Multiscale Observations. <i>Astrophysical Journal Letters</i> , 2019 , 881, L31	7.9	20	
1112	MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves. <i>Geophysical Research Letters</i> , 2019 , 46, 11622-11631	4.9	6	
1111	Electrostatic Spacecraft Potential Structure and Wake Formation Effects for Characterization of Cold Ion Beams in the Earth's Magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 10048-10062	2.6	13	
1110	Search for water outgassing of (1) Ceres near perihelion. <i>Astronomy and Astrophysics</i> , 2019 , 628, A22	5.1	7	
1109	Asymmetric Craters on the Dwarf Planet Ceres R esults of Second Extended Mission Data Analysis. <i>Geosciences (Switzerland)</i> , 2019 , 9, 475	2.7	1	
1108	Energy Conversion and Dissipation at Dipolarization Fronts: A Statistical Overview. <i>Geophysical Research Letters</i> , 2019 , 46, 12693-12701	4.9	24	
1107	Acceleration of Interstellar Pickup He+ at Earth's Perpendicular Bow Shock. <i>Geophysical Research Letters</i> , 2019 , 46, 10735-10743	4.9	6	
1106	Observation of Nongyrotropic Electron Distribution Across the Electron Diffusion Region in the Magnetotail Reconnection. <i>Geophysical Research Letters</i> , 2019 , 46, 14263-14273	4.9	10	

1105	Magnetized Dust Clouds Penetrating the Terrestrial Bow Shock Detected by Multiple Spacecraft. Geophysical Research Letters, 2019 , 46, 14282-14289	4.9	1
1104	Small Spatial-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer Surveyed by Magnetosphere Multiscale Spacecraft. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 9976-	9985	7
1103	Observations of Electromagnetic Electron Holes and Evidence of Cherenkov Whistler Emission. <i>Physical Review Letters</i> , 2019 , 123, 255101	7.4	8
1102	Electron Scattering by Low-frequency Whistler Waves at Earth® Bow Shock. <i>Astrophysical Journal</i> , 2019 , 886, 53	4.7	11
1101	InSight Auxiliary Payload Sensor Suite (APSS). Space Science Reviews, 2019, 215, 1	7.5	64
1100	Multispacecraft Analysis of Electron Holes. <i>Geophysical Research Letters</i> , 2019 , 46, 55-63	4.9	23
1099	Surface composition of dwarf planet Ceres: Constraints from the Dawn spacecraft mission. <i>Icarus</i> , 2019 , 318, 1	3.8	1
1098	Water Vapor Contribution to Ceres' Exosphere From Observed Surface Ice and Postulated Ice-Exposing Impacts. <i>Journal of Geophysical Research E: Planets</i> , 2019 , 124, 61-75	4.1	15
1097	Waves in Kinetic-Scale Magnetic Dips: MMS Observations in the Magnetosheath. <i>Geophysical Research Letters</i> , 2019 , 46, 523-533	4.9	35
1096	Reconstruction of the Electron Diffusion Region of Magnetotail Reconnection Seen by the MMS Spacecraft on 11 July 2017. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 122-138	2.6	16
1095	Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 2407-2421	4.3	25
1094	High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. <i>Icarus</i> , 2019 , 319, 812-827	3.8	34
1093	The various ages of Occator crater, Ceres: Results of a comprehensive synthesis approach. <i>Icarus</i> , 2019 , 320, 60-82	3.8	31
1092	An aqueously altered carbon-rich Ceres. <i>Nature Astronomy</i> , 2019 , 3, 140-145	12.1	48
1091	Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus. <i>Geophysical Research Letters</i> , 2019 , 46, 80-88	4.9	5
1090	Mineralogy mapping of the Ac-H-5 Fejokoo quadrangle of Ceres. <i>Icarus</i> , 2019 , 318, 147-169	3.8	1
1089	Synthesis of the special issue: The formation and evolution of CeresIDccator crater. <i>Icarus</i> , 2019 , 320, 213-225	3.8	14
1088	Mineralogical analysis of the Ac-H-6 Haulani quadrangle of the dwarf planet Ceres. <i>Icarus</i> , 2019 , 318, 170-187	3.8	9

1087	Ac-H-11 Sintana and Ac-H-12 Toharu quadrangles: Assessing the large and small scale heterogeneities of CeresBurface. <i>Icarus</i> , 2019 , 318, 230-240	3.8	5
1086	Mineralogical analysis of quadrangle Ac-H-10 Rongo on the dwarf planet Ceres. <i>Icarus</i> , 2019 , 318, 212-2	29 .8	5
1085	Mineralogy of the Occator quadrangle. <i>Icarus</i> , 2019 , 318, 205-211	3.8	7
1084	Compositional differences among Bright Spots on the Ceres surface. <i>Icarus</i> , 2019 , 320, 202-212	3.8	26
1083	Spectral investigation of quadrangle AC-H 3 of the dwarf planet Ceres IThe region of impact crater Dantu. <i>Icarus</i> , 2019 , 318, 111-123	3.8	3
1082	Mineralogical mapping of the Kerwan quadrangle on Ceres. <i>Icarus</i> , 2019 , 318, 188-194	3.8	5
1081	Ceresilmpact craters in Relationships between surface composition and geology. <i>Icarus</i> , 2019 , 318, 56-74	3.8	6
1080	The formation and evolution of bright spots on Ceres. <i>Icarus</i> , 2019 , 320, 188-201	3.8	37
1079	Mineralogy of the UrvaraMalode region on Ceres. <i>Icarus</i> , 2019 , 318, 241-250	3.8	5
1078	Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. <i>Icarus</i> , 2019 , 320, 39-48	3.8	33
1077	Introduction to the special issue: The formation and evolution of CeresIDccator crater. <i>Icarus</i> , 2019 , 320, 1-6	3.8	4
1076	Photometry of Ceres and Occator faculae as inferred from VIR/Dawn data. <i>Icarus</i> , 2019 , 320, 97-109	3.8	12
1075	Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. <i>Icarus</i> , 2019 , 320, 83-96	3.8	44
1074	CeresIDccator crater and its faculae explored through geologic mapping. <i>Icarus</i> , 2019 , 320, 7-23	3.8	16
1073	The surface composition of CeresŒzinu quadrangle analyzed by the Dawn mission. <i>Icarus</i> , 2019 , 318, 124-146	3.8	4
1072	Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer. <i>Icarus</i> , 2019 , 318, 22-41	3.8	38
1071	Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres. <i>Icarus</i> , 2019 , 318, 99-110	3.8	15
1070	Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres. <i>Planetary and Space Science</i> , 2018 , 153, 142-156	2	4

1069	The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 93-103	2.6	18
1068	Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 2018	2.6	16
1067	Energy partitioning constraints at kinetic scales in low-turbulence. <i>Physics of Plasmas</i> , 2018 , 25,	2.1	20
1066	Determining L-M-N Current Sheet Coordinates at the Magnetopause From Magnetospheric Multiscale Data. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 2274	2.6	20
1065	Mineralogy and temperature of crater Haulani on Ceres. Meteoritics and Planetary Science, 2018, 53, 190	0 2. 892	417
1064	An Electron-Scale Current Sheet Without Bursty Reconnection Signatures Observed in the Near-Earth Tail. <i>Geophysical Research Letters</i> , 2018 , 45, 4542-4549	4.9	31
1063	Ceres internal structure from geophysical constraints. <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1999	-2007	14
1062	Magnetic Reconnection, Turbulence, and Particle Acceleration: Observations in the Earth's Magnetotail. <i>Geophysical Research Letters</i> , 2018 , 45, 3338-3347	4.9	40
1061	Dawn mission's search for satellites of Ceres: Intact protoplanets don't have satellites. <i>Icarus</i> , 2018 , 316, 191-204	3.8	6
1060	MMS Examination of FTEs at the Earth's Subsolar Magnetopause. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 1224-1241	2.6	31
1059	Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan. <i>Geophysical Research Letters</i> , 2018 , 45, 1297-1304	4.9	13
1058	Electron Crescent Distributions as a Manifestation of Diamagnetic Drift in an Electron-Scale Current Sheet: Magnetospheric Multiscale Observations Using New 7.5 ms Fast Plasma Investigation Moments. <i>Geophysical Research Letters</i> , 2018 , 45, 578-584	4.9	39
1057	MMS Observation of Asymmetric Reconnection Supported by 3-D Electron Pressure Divergence. Journal of Geophysical Research: Space Physics, 2018, 123, 1806	2.6	24
1056	Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 146-162	2.6	9
1055	Geologic constraints on the origin of red organic-rich material on Ceres. <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1983-1998	2.8	25
1054	Magnetospheric Multiscale Observations of Electron Scale Magnetic Peak. <i>Geophysical Research Letters</i> , 2018 , 45, 527-537	4.9	25
1053	Differing Properties of Two Ion-Scale Magnetopause Flux Ropes. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 114-131	2.6	7
1052	Electron Jet Detected by MMS at Dipolarization Front. <i>Geophysical Research Letters</i> , 2018 , 45, 556-564	4.9	56

1051	Guide Field Reconnection: Exhaust Structure and Heating. Geophysical Research Letters, 2018, 45, 4569-	-4 <u>Б</u> .37	23
1050	Multipoint Analysis of Electric Currents in Geospace Using the Curlometer Technique. <i>Geophysical Monograph Series</i> , 2018 , 67-80	1.1	12
1049	Localized Oscillatory Energy Conversion in Magnetopause Reconnection. <i>Geophysical Research Letters</i> , 2018 , 45, 1237-1245	4.9	31
1048	Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1118-1133	2.6	13
1047	Nature, formation, and distribution of carbonates on Ceres. Science Advances, 2018, 4, e1701645	14.3	62
1046	Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle. <i>Science Advances</i> , 2018 , 4, eaao3757	14.3	37
1045	In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth's Magnetosheath. <i>Astrophysical Journal Letters</i> , 2018 , 856, L19	7.9	39
1044	STEREOObservations of Interplanetary Coronal Mass Ejections in 2007\(\mathbb{Q}\)016. <i>Astrophysical Journal</i> , 2018 , 855, 114	4.7	38
1043	Magnetospheric Multiscale Observations of Turbulent Magnetic and Electron Velocity Fluctuations in Earth's Magnetosheath Downstream of a quasi-parallel bow shock. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2018 , 177, 84-91	2	10
1042	Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1779	2.6	24
1041	The geology of the occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism. <i>Icarus</i> , 2018 , 316, 128-139	3.8	20
1040	Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust. <i>Icarus</i> , 2018 , 316, 28-45	3.8	13
1039	Geology of Ceres[North Pole quadrangle with Dawn FC imaging data. <i>Icarus</i> , 2018 , 316, 14-27	3.8	3
1038	Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. <i>Icarus</i> , 2018 , 316, 167-190	3.8	18
1037	The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. <i>Icarus</i> , 2018 , 316, 84-98	3.8	14
1036	The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. <i>Icarus</i> , 2018 , 316, 63-83	3.8	15
1035	Carbonaceous chondrites as analogs for the composition and alteration of Ceres. <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1793-1804	2.8	43
1034	The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. <i>Icarus</i> , 2018 , 299, 411-429	3.8	49

1033	Nanodust released in interplanetary collisions. <i>Planetary and Space Science</i> , 2018 , 156, 2-6	2	4
1032	Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 6383-6393	2.6	19
1031	Electron Dynamics in Magnetosheath Mirror-Mode Structures. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 5561-5570	2.6	24
1030	Carriers and Sources of Magnetopause Current: MMS Case Study. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 5464-5475	2.6	8
1029	Energy Conversion and Collisionless Plasma Dissipation Channels in the Turbulent Magnetosheath Observed by the Magnetospheric Multiscale Mission. <i>Astrophysical Journal</i> , 2018 , 862, 32	4.7	43
1028	Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath. <i>Nature</i> , 2018 , 557, 202-206	50.4	173
1027	Magnetic depression and electron transport in an ion-scale flux rope associated with Kelvin⊞elmholtz waves. <i>Annales Geophysicae</i> , 2018 , 36, 879-889	2	7
1026	MMS Observations of Harmonic Electromagnetic Ion Cyclotron Waves. <i>Geophysical Research Letters</i> , 2018 , 45, 8764-8772	4.9	9
1025	The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. <i>Icarus</i> , 2018 , 316, 114-127	3.8	3
1024	Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission. <i>Geophysical Research Letters</i> , 2018 , 45, 8783-8792	4.9	21
1023	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (VIR). <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1844-1865	2.8	19
1022	Ring-Mold Craters on Ceres: Evidence for Shallow Subsurface Water Ice Sources. <i>Geophysical Research Letters</i> , 2018 , 45, 8121-8128	4.9	2
1021	New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data. <i>Astrophysical Journal</i> , 2018 , 859, 127	4.7	21
1020	Field-Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMS-ARTEMIS Observations. <i>Geophysical Research Letters</i> , 2018 , 45, 5836-5844	4.9	7
1019	Solitary Waves Across Supercritical Quasi-Perpendicular Shocks. <i>Geophysical Research Letters</i> , 2018 , 45, 5809	4.9	26
1018	Geologic mapping of the Ac-11 Sintana quadrangle: Assessing diverse crater morphologies. <i>Icarus</i> , 2018 , 316, 154-166	3.8	3
1017	Ceres Ezinu quadrangle: a heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater. <i>Icarus</i> , 2018 , 316, 46-62	3.8	16
1016	The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating CeresIbldest, largest impact basin. <i>Icarus</i> , 2018 , 316, 99-113	3.8	22

(2018-2018)

1015	Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitude AlfvBic Fluctuations Terminating in a Field and Flow Discontinuity. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8983-9004	2.6	1
1014	Reconnection in the Martian Magnetotail: Hall-MHD With Embedded Particle-in-Cell Simulations. Journal of Geophysical Research: Space Physics, 2018 , 123, 3742-3763	2.6	12
1013	CeresBpectral link to carbonaceous chondritesAnalysis of the dark background materials. <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1925-1945	2.8	4
1012	Dantu's mineralogical properties IA view into the composition of Ceres' crust. <i>Meteoritics and Planetary Science</i> , 2018 , 53, 1866-1883	2.8	7
1011	Magnetospheric Multiscale Observations of Turbulence in the Magnetosheath on Kinetic Scales. <i>Astrophysical Journal Letters</i> , 2018 , 864, L29	7.9	16
1010	Multiscale Currents Observed by MMS in the Flow Braking Region. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 1260-1278	2.6	27
1009	How Accurately Can We Measure the Reconnection Rate for the MMS Diffusion Region Event of 11 July 2017?. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 9130-9149	2.6	46
1008	Electron Reconnection in the Magnetopause Current Layer. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 9222-9238	2.6	8
1007	Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 4858-4878	2.6	60
1006	Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause: Current System, Electron Heating, and Plasma Waves. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 1834-1852	2.6	24
1005	Shock ripples observed by the MMS spacecraft: ion reflection and dispersive properties. <i>Plasma Physics and Controlled Fusion</i> , 2018 , 60, 125006	2	11
1004	Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. <i>Science</i> , 2018 , 362, 1391-1395	33.3	139
1003	Incompressive Energy Transfer in the Earth Magnetosheath: Magnetospheric Multiscale Observations. <i>Astrophysical Journal</i> , 2018 , 866, 106	4.7	32
1002	Magnetotail Hall Physics in the Presence of Cold Ions. <i>Geophysical Research Letters</i> , 2018 , 45, 10,941	4.9	9
1001	Kinetic Range Spectral Features of Cross Helicity Using the Magnetospheric Multiscale Spacecraft. <i>Physical Review Letters</i> , 2018 , 121, 265101	7.4	11
1000	Rippled Electron-Scale Structure of a Dipolarization Front. <i>Geophysical Research Letters</i> , 2018 , 45, 12,110	6 _‡ .152,1	2 4 7
999	Higher-Order Turbulence Statistics in the Earth's Magnetosheath and the Solar Wind Using Magnetospheric Multiscale Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 994	2.6	40
998	Ion Dynamics and the Shock Profile of a Low-Mach Number Shock. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 8913-8923	2.6	8

997	CeresIbpposition effect observed by the Dawn framing camera. <i>Astronomy and Astrophysics</i> , 2018 , 620, A201	5.1	9
996	Large-Amplitude High-Frequency Waves at Earth's Magnetopause. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 2630-2657	2.6	17
995	MMS Observations of Electrostatic Waves in an Oblique Shock Crossing. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 9430-9442	2.6	40
994	MMS Observations of Beta-dependent Constraints on Ion Temperature Anisotropy in Earth Magnetosheath. <i>Astrophysical Journal</i> , 2018 , 866, 25	4.7	10
993	MMS, Van Allen Probes, GOES 13, and Ground-Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8331-8357	2.6	19
992	Saturn's magnetic field revealed by the Cassini Grand Finale. <i>Science</i> , 2018 , 362,	33.3	85
991	Discovery of Atmospheric-Wind-Driven Electric Currents in Saturn's Magnetosphere in the Gap Between Saturn and its Rings. <i>Geophysical Research Letters</i> , 2018 , 45, 10,068-10,074	4.9	16
990	Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. <i>Space Science Reviews</i> , 2018 , 214, 1	7.5	59
989	Perpendicular Current Reduction Caused by Cold Ions of Ionospheric Origin in Magnetic Reconnection at the Magnetopause: Particle-in-Cell Simulations and Spacecraft Observations. <i>Geophysical Research Letters</i> , 2018 , 45, 10,033-10,042	4.9	12
988	Observational Evidence of Large-Scale Multiple Reconnection at the Earth's Dayside Magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8407-8421	2.6	16
987	Small-Scale Flux Transfer Events Formed in the Reconnection Exhaust Region Between Two X Lines. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8473-8488	2.6	17
986	Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data. <i>Astrophysical Journal</i> , 2018 , 866, 81	4.7	33
985	Floor-Fractured Craters on Ceres and Implications for Interior Processes. <i>Journal of Geophysical Research E: Planets</i> , 2018 , 123, 3188-3204	4.1	11
984	Modulation of Ion and Electron Pitch Angle in the Presence of Large-amplitude, Low-frequency, Left-hand Circularly Polarized Electromagnetic Waves Observed by MMS. <i>Astrophysical Journal</i> , 2018 , 867, 58	4.7	9
983	Simultaneous Multispacecraft Probing of Electron Phase Space Holes. <i>Geophysical Research Letters</i> , 2018 , 45, 11,513-11,519	4.9	24
982	Ion Kinetics in a Hot Flow Anomaly: MMS Observations. <i>Geophysical Research Letters</i> , 2018 , 45, 11,520	4.9	18
981	Cryovolcanic rates on Ceres revealed by topography. <i>Nature Astronomy</i> , 2018 , 2, 946-950	12.1	28
980	Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. <i>Science</i> , 2018 , 361, 1000-1003	33.3	19

(2017-2018)

979	A Statistical Study of Slow-Mode Shocks Observed by MMS in the Dayside Magnetopause. <i>Geophysical Research Letters</i> , 2018 , 45, 4675-4684	4.9	О
978	In Situ Observation of Magnetic Reconnection Between an Earthward Propagating Flux Rope and the Geomagnetic Field. <i>Geophysical Research Letters</i> , 2018 , 45, 8729-8737	4.9	26
977	Autogenous and efficient acceleration of energetic ions upstream of Earth's bow shock. <i>Nature</i> , 2018 , 561, 206-210	50.4	32
976	Electron Energization at a Reconnecting Magnetosheath Current Sheet. <i>Geophysical Research Letters</i> , 2018 , 45, 8081-8090	4.9	16
975	Local Excitation of Whistler Mode Waves and Associated Langmuir Waves at Dayside Reconnection Regions. <i>Geophysical Research Letters</i> , 2018 , 45, 8793-8802	4.9	14
974	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. <i>Geophysical Research Letters</i> , 2018 , 45, 7248-7256	4.9	21
973	Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock. <i>Physical Review Letters</i> , 2018 , 120, 225101	7.4	29
972	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. <i>Icarus</i> , 2018 , 315, 146-157	3.8	136
971	Psyche Science Operations Concept: Maximize Reuse to Minimize Risk 2018 ,		2
970	Hodographic approach for determining spacecraft trajectories through magnetic reconnection diffusion regions. <i>Geophysical Research Letters</i> , 2017 , 44, 1625-1633	4.9	6
969	The vanishing cryovolcanoes of Ceres. <i>Geophysical Research Letters</i> , 2017 , 44, 1243-1250	4.9	44
968	Zipper-likelperiodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 1600-1610	2.6	11
967	Localized aliphatic organic material on the surface of Ceres. <i>Science</i> , 2017 , 355, 719-722	33.3	122
966	An investigation of the bluish material on Ceres. <i>Geophysical Research Letters</i> , 2017 , 44, 1660	4.9	18
965	Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. <i>Astrophysical Journal Letters</i> , 2017 , 836, L27	7.9	63
964	On the origin of the crescent-shaped distributions observed by MMS at the magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 2024-2039	2.6	35
963	Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement. Journal of Geophysical Research: Space Physics, 2017 , 122, 2040-2050	2.6	13
962	Electron Heating at Kinetic Scales in Magnetosheath Turbulence. <i>Astrophysical Journal</i> , 2017 , 836, 247	4.7	40

961	Observations of kinetic-size magnetic holes in the magnetosheath. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 1990-2000	2.6	54
960	Magnetospheric Multiscale mission observations of the outer electron diffusion region. <i>Geophysical Research Letters</i> , 2017 , 44, 2049-2059	4.9	30
959	Possible Ceres bow shock surfaces based on fluid models. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 4976-4987	2.6	3
958	Geomorphological evidence for ground ice on dwarf planet Ceres. <i>Nature Geoscience</i> , 2017 , 10, 338-343	18.3	75
957	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209	2.6	29
956	Quantitative analysis of a Hall system in the exhaust of asymmetric magnetic reconnection. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 5277-5289	2.6	12
955	Large-scale characteristics of reconnection diffusion regions and associated magnetopause crossings observed by MMS. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 5466-5486	2.6	39
954	The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission: A case study. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 5487-5501	2.6	20
953	High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. <i>Planetary and Space Science</i> , 2017 , 140, 74-79	2	24
952	MMS observations of whistler waves in electron diffusion region. <i>Geophysical Research Letters</i> , 2017 , 44, 3954-3962	4.9	68
951	Electron Scattering by High-frequency Whistler Waves at Earth Bow Shock. <i>Astrophysical Journal Letters</i> , 2017 , 842, L11	7.9	29
950	Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 523	5 ² 5246	5 ⁴¹
949	Global observations of magnetospheric high- poloidal waves during the 22 June 2015 magnetic storm. <i>Geophysical Research Letters</i> , 2017 , 44, 3456-3464	4.9	33
948	Reconstruction of the electron diffusion region observed by the Magnetospheric Multiscale spacecraft: First results. <i>Geophysical Research Letters</i> , 2017 , 44, 4566-4574	4.9	20
947	Parallel electron heating in the magnetospheric inflow region. <i>Geophysical Research Letters</i> , 2017 , 44, 4384-4392	4.9	8
946	Structure, force balance, and topology of Earth's magnetopause. <i>Science</i> , 2017 , 356, 960-963	33.3	7
945	Quadrupolar pattern of the asymmetric guide-field reconnection. <i>Journal of Geophysical Research:</i> Space Physics, 2017 , 122, 6349-6356	2.6	30
944	Structure and evolution of flux transfer events near dayside magnetic reconnection dissipation region: MMS observations. <i>Geophysical Research Letters</i> , 2017 , 44, 5951-5959	4.9	19

(2017-2017)

943	Spectral analysis of Ahuna Mons from Dawn mission's visible-infrared spectrometer. <i>Geophysical Research Letters</i> , 2017 , 44, 97-104	4.9	46
942	Wave-particle energy exchange directly observed in a kinetic AlfvB-branch wave. <i>Nature Communications</i> , 2017 , 8, 14719	17.4	57
941	Possible potentially threatening co-orbiting material of asteroid 2000EE104 identified through interplanetary magnetic field disturbances. <i>Meteoritics and Planetary Science</i> , 2017 , 52, 1125-1132	2.8	3
940	Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause. <i>Geophysical Research Letters</i> , 2017 , 44, 2978-2986	4.9	35
939	EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 3262-3276	2.6	2
938	Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images. <i>Icarus</i> , 2017 , 288, 201-225	3.8	64
937	The Dependence of the Cerean Exosphere on Solar Energetic Particle Events. <i>Astrophysical Journal Letters</i> , 2017 , 838, L8	7.9	35
936	Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. <i>Astronomy and Astrophysics</i> , 2017 , 598, A130	5.1	56
935	A direct examination of the dynamics of dipolarization fronts using MMS. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 4335-4347	2.6	36
934	MMS observation of inverse energy dispersion in shock drift accelerated ions. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 3232-3246	2.6	1
933	Ceres's obliquity history and its implications for the permanently shadowed regions. <i>Geophysical Research Letters</i> , 2017 , 44, 2652-2661	4.9	27
932	Lower hybrid waves in the ion diffusion and magnetospheric inflow regions. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 517-533	2.6	81
931	Surface water-ice deposits in the northern shadowed regions of Ceres. <i>Nature Astronomy</i> , 2017 , 1,	12.1	50
930	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. <i>Science</i> , 2017 , 355, 55-59	33.3	146
929	IlomonosovISatelliteBpace Observatory to Study Extreme Phenomena in Space. <i>Space Science Reviews</i> , 2017 , 212, 1705-1738	7.5	17
928	Evidence for the Interior Evolution of Ceres from Geologic Analysis of Fractures. <i>Geophysical Research Letters</i> , 2017 , 44, 9564-9572	4.9	25
927	Magnetospheric Ion Evolution Across the Low-Latitude Boundary Layer Separatrix. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10,247-10,262	2.6	14
926	MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock. Journal of Geophysical Research: Space Physics, 2017 , 122, 11,003-11,017	2.6	39

925	Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 12,236-12,257	2.6	24
924	Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10891-10909	2.6	8
923	Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. <i>Journal of Geophysical Research E: Planets</i> , 2017 , 122, 2267-2293	4.1	94
922	The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: MMS Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,342-11,353	2.6	32
921	The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,991-12,005	2.6	16
920	Cold Ionospheric Ions in the Magnetic Reconnection Outflow Region. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10,194-10,202	2.6	16
919	Near-Earth plasma sheet boundary dynamics during substorm dipolarization. <i>Earth, Planets and Space</i> , 2017 , 69, 129	2.9	14
918	Magnetospheric Multiscale analysis of intense field-aligned Poynting flux near the Earth's plasma sheet boundary. <i>Geophysical Research Letters</i> , 2017 , 44, 7106-7113	4.9	14
917	Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9396-9413	2.6	19
916	Interaction of Magnetic Flux Ropes Via Magnetic Reconnection Observed at the Magnetopause. Journal of Geophysical Research: Space Physics, 2017, 122, 10,436-10,447	2.6	21
915	MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-AlfvBic Flow. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9934-9951	2.6	2
914	The interior structure of Ceres as revealed by surface topography. <i>Earth and Planetary Science Letters</i> , 2017 , 476, 153-164	5.3	99
913	Magnetosheath High-Speed Jets: Internal Structure and Interaction With Ambient Plasma. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 10,157-10,175	2.6	17
912	Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause: Magnetospheric Multiscale Observations. <i>Physical Review Letters</i> , 2017 , 119, 055101	7.4	56
911	Conditions for Sublimating Water Ice to Supply Ceres' Exosphere. <i>Journal of Geophysical Research E: Planets</i> , 2017 , 122, 1984-1995	4.1	34
910	Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13. <i>Geophysical Research Letters</i> , 2017 , 44, 8712-8720	4.9	13
909	High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission. <i>Astrophysical Journal Letters</i> , 2017 , 844, L9	7.9	23
908	Instability of Agyrotropic Electron Beams near the Electron Diffusion Region. <i>Physical Review Letters</i> , 2017 , 119, 025101	7.4	37

(2016-2017)

907	Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. <i>Geophysical Research Letters</i> , 2017 , 44, 6570-6578	4.9	43
906	Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice. <i>Astronomical Journal</i> , 2017 , 154, 84	4.9	14
905	The Putative Cerean Exosphere. Astrophysical Journal, 2017, 850, 85	4.7	16
904	Magnetospheric Multiscale Observation of Plasma Velocity-Space Cascade: Hermite Representation and Theory. <i>Physical Review Letters</i> , 2017 , 119, 205101	7.4	54
903	Editorial on: Topical Collection on InSight Mission to Mars. Space Science Reviews, 2017, 211, 1-3	7.5	11
902	Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time-dependent MHD study. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 1714-1730	2.6	30
901	The role of plasma slowdown in the generation of Rhea's AlfvE wings. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 1778-1788	2.6	7
900	A statistical study of kinetic-size magnetic holes in turbulent magnetosheath: MMS observations. Journal of Geophysical Research: Space Physics, 2017 , 122, 8577-8588	2.6	51
899	. Computing in Science and Engineering, 2017 , 19, 6-17	1.5	
898	Space Weather in the Heliosphere. <i>Proceedings of the International Astronomical Union</i> , 2017 , 13, 191-1	196.1	2
898 897	Space Weather in the Heliosphere. <i>Proceedings of the International Astronomical Union</i> , 2017 , 13, 191-1 THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017 ,	196.1	3
		196.1	
897	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017,	196.1	3
897 896	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017, THE HAMO-BASED GLOBAL GEOLOGIC MAP OF CERES FROM NASAS DAWN MISSION 2017,	196.1	3
897 896 895	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017, THE HAMO-BASED GLOBAL GEOLOGIC MAP OF CERES FROM NASAB DAWN MISSION 2017, The Magnetospheric Multiscale Magnetometers 2017, 189-256 The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products	1.5	3 2 6
897 896 895	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017, THE HAMO-BASED GLOBAL GEOLOGIC MAP OF CERES FROM NASAB DAWN MISSION 2017, The Magnetospheric Multiscale Magnetometers 2017, 189-256 The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products 2017, 105-135 Optimized merging of search coil and fluxgate data for MMS. Geoscientific Instrumentation,		3 2 6
897 896 895 894	THE FORMATION AND EVOLUTION OF BRIGHT SPOTS ON CERES 2017, THE HAMO-BASED GLOBAL GEOLOGIC MAP OF CERES FROM NASAB DAWN MISSION 2017, The Magnetospheric Multiscale Magnetometers 2017, 189-256 The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products 2017, 105-135 Optimized merging of search coil and fluxgate data for MMS. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 521-530	1.5	3 2 6 0

889	Cryovolcanism on Ceres. <i>Science</i> , 2016 , 353,	33.3	135
888	The geomorphology of Ceres. <i>Science</i> , 2016 , 353,	33.3	92
887	Cratering on Ceres: Implications for its crust and evolution. <i>Science</i> , 2016 , 353,	33.3	121
886	Results of a hubble space telescope search for natural satellites of dwarf planet 1 ceres. <i>Icarus</i> , 2016 , 280, 308-314	3.8	2
885	MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 5536	5 ⁴ 5344	65
884	MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma. <i>Geophysical Research Letters</i> , 2016 , 43, 7850-7858	4.9	41
883	Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm. <i>Geophysical Research Letters</i> , 2016 , 43, 7311-7318	4.9	23
882	Inverse energy dispersion of energetic ions observed in the magnetosheath. <i>Geophysical Research Letters</i> , 2016 , 43, 7338-7347	4.9	5
881	Observations of turbulence in a Kelvin-Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 11,021-11	1,7054	59
880	Force balance at the magnetopause determined with MMS: Application to flux transfer events. <i>Geophysical Research Letters</i> , 2016 , 43, 11,941-11,947	4.9	25
879	Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 9608-9618	2.6	19
878	Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-AlfvBic flow. <i>Geophysical Research Letters</i> , 2016 , 43, 6070-6077	4.9	20
877	Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves. <i>Geophysical Research Letters</i> , 2016 , 43, 5606-5615	4.9	84
876	Thick escaping magnetospheric ion layer in magnetopause reconnection with MMS observations. <i>Geophysical Research Letters</i> , 2016 , 43, 6028-6035	4.9	1
875	Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. <i>Geophysical Research Letters</i> , 2016 , 43, 7279-7286	4.9	38
874	A comparative study of dipolarization fronts at MMS and Cluster. <i>Geophysical Research Letters</i> , 2016 , 43, 6012-6019	4.9	32
873	Electrodynamic context of magnetopause dynamics observed by magnetospheric multiscale. <i>Geophysical Research Letters</i> , 2016 , 43, 5988-5996	4.9	8
872	Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission. <i>Geophysical Research Letters</i> , 2016 , 43, 7785-7794	4.9	33

(2016-2016)

871	Cold ion demagnetization near the X-line of magnetic reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 6759-6767	4.9	27	
870	Electron currents and heating in the ion diffusion region of asymmetric reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 4691-4700	4.9	43	
869	Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing. <i>Geophysical Research Letters</i> , 2016 , 43, 5943-5952	4.9	36	
868	Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection. <i>Physical Review Letters</i> , 2016 , 116, 235102	7.4	50	
867	Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection. <i>Physical Review Letters</i> , 2016 , 117, 015001	7.4	60	
866	MMS Multipoint electric field observations of small-scale magnetic holes. <i>Geophysical Research Letters</i> , 2016 , 43, 5953-5959	4.9	36	
865	Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 6036-6043	4.9	55	
864	Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission. <i>Geophysical Research Letters</i> , 2016 , 43, 5909-5917	4.9	51	
863	Estimates of terms in Ohm's law during an encounter with an electron diffusion region. <i>Geophysical Research Letters</i> , 2016 , 43, 5918-5925	4.9	68	
862	Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft. <i>Physical Review Letters</i> , 2016 , 117, 165101	7.4	59	
861	The permeability of the magnetopause to a multispecies substorm injection of energetic particles. <i>Geophysical Research Letters</i> , 2016 , 43, 9453-9460	4.9	7	
860	Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015. <i>Geophysical Research Letters</i> , 2016 , 43, 9397-9405	4.9	5	
859	FC colour images of dwarf planet Ceres reveal a complicated geological history. <i>Planetary and Space Science</i> , 2016 , 134, 122-127	2	36	
858	Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 9926-9939	2.6	23	
857	Reconnection guide field and quadrupolar structure observed by MMS on 16 October 2015 at 1307 UT. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 9880-9887	2.6	7	
856	Carrington Class Solar Events and How to Recognize Them. <i>Proceedings of the International Astronomical Union</i> , 2016 , 12, 204-210	0.1	O	
855	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. <i>Proceedings of the International Astronomical Union</i> , 2016 , 12, 211-217	0.1		
854	Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations. <i>Geophysical Research Letters</i> , 2016 , 43, 5581-5588	4.9	14	

853	Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 6724-6733	4.9	34
852	Lithologic variation within bright material on Vesta revealed by linear spectral unmixing. <i>Icarus</i> , 2016 , 272, 16-31	3.8	9
851	The unusual asteroid 2201 Oljato: Origins and possible debris trail. <i>Planetary and Space Science</i> , 2016 , 123, 16-24	2	2
850	The AUTUMNX magnetometer meridian chain in QuBec, Canada. <i>Earth, Planets and Space</i> , 2016 , 68,	2.9	12
849	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. <i>Nature</i> , 2016 , 536, 54-7	50.4	198
848	Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. <i>Nature Geoscience</i> , 2016 , 9, 538-542	18.3	100
847	Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 5626-5634	4.9	49
846	Observation of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region by the spacecraft of the Magnetospheric Multiscale (MMS) mission. <i>Geophysical Research Letters</i> , 2016 , 43, 4808-4815	4.9	24
845	Motion of the MMS spacecraft relative to the magnetic reconnection structure observed on 16 October 2015 at 1307 UT. <i>Geophysical Research Letters</i> , 2016 , 43, 5589-5596	4.9	28
844	Comparison of Magnetospheric Multiscale ion jet signatures with predicted reconnection site locations at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 5997-6004	4.9	16
843	A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection. <i>Geophysical Research Letters</i> , 2016 , 43, 6051-6059	4.9	21
842	The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products. <i>Space Science Reviews</i> , 2016 , 199, 105-135	7.5	292
841	The Magnetospheric Multiscale Magnetometers. <i>Space Science Reviews</i> , 2016 , 199, 189-256	7.5	670
840	Ceres Survey Atlas derived from Dawn Framing Camera images. <i>Planetary and Space Science</i> , 2016 , 121, 115-120	2	30
839	Optical space weathering on Vesta: Radiative-transfer models and Dawn observations. <i>Icarus</i> , 2016 , 265, 161-174	3.8	9
838	The Magnetospheric Multiscale Magnetometers 2016 , 199, 189		1
837	Magnetopause erosion during the 17 March 2015 magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations. <i>Geophysical Research Letters</i> , 2016 , 43, 2396-2404	4.9	27
836	Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 3042-3050	4.9	65

(2016-2016)

835	Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. <i>Geophysical Research Letters</i> , 2016 , 43, 4716-4724	4.9	80
834	Electron jet of asymmetric reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 5571-5580	4.9	59
833	Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. <i>Geophysical Research Letters</i> , 2016 , 43, 5969-5978	4.9	72
832	Cassini observations of Saturn's southern polar cusp. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 3006-3030	2.6	12
831	Timing of optical maturation of recently exposed material on Ceres. <i>Geophysical Research Letters</i> , 2016 , 43, 11,987-11,993	4.9	30
830	Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism. <i>Geophysical Research Letters</i> , 2016 , 43, 11,994-12,003	4.9	44
829	The permanently shadowed regions of dwarf planet Ceres. <i>Geophysical Research Letters</i> , 2016 , 43, 6783	- 6 .7 <u>/</u> 89	45
828	Ion cyclotron waves at Titan. Journal of Geophysical Research: Space Physics, 2016, 121, 2095-2103	2.6	2
827	Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase. <i>Geophysical Research Letters</i> , 2016 , 43, 4858-4864	4.9	12
826	Weak, Quiet Magnetic Fields Seen in the Venus Atmosphere. Scientific Reports, 2016 , 6, 23537	4.9	10
825	The missing large impact craters on Ceres. <i>Nature Communications</i> , 2016 , 7, 12257	17.4	73
824	The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta. <i>Geophysical Research Letters</i> , 2016 , 43, 12,340	4.9	6
823	SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES. Astrophysical Journal Letters, 2016, 817, L22	7.9	36
822	Electron-scale measurements of magnetic reconnection in space. <i>Science</i> , 2016 , 352, aaf2939	33.3	418
821	Observations of large-amplitude, parallel, electrostatic waves associated with the Kelvin-Helmholtz instability by the magnetospheric multiscale mission. <i>Geophysical Research Letters</i> , 2016 , 43, 8859-8866	4.9	18
820	Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 1435-1442	4.9	36
819	Electron dynamics in a subproton-gyroscale magnetic hole. <i>Geophysical Research Letters</i> , 2016 , 43, 4112	-44.1518	44
818	Observations of energetic particle escape at the magnetopause: Early results from the MMS Energetic Ion Spectrometer (EIS). <i>Geophysical Research Letters</i> , 2016 , 43, 5960-5968	4.9	22

817	Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms. <i>Geophysical Research Letters</i> , 2016 , 43, 4841-4849	4.9	23
816	Wave telescope technique for MMS magnetometer. <i>Geophysical Research Letters</i> , 2016 , 43, 4774-4780	4.9	10
815	Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves. <i>Geophysical Research Letters</i> , 2016 , 43, 5635-5643	4.9	36
814	Decay of mesoscale flux transfer events during quasi-continuous spatially extended reconnection at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 4755-4762	4.9	23
813	Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 6705-6712	4.9	39
812	Steepening of waves at the duskside magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 7373-7380	4.9	7
811	High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images. <i>Planetary and Space Science</i> , 2016 , 129, 103-107	2	45
810	Global variations in regolith properties on asteroid Vesta from Dawn's low-altitude mapping orbit. <i>Meteoritics and Planetary Science</i> , 2016 , 51, 2366-2386	2.8	8
809	Ion Cyclotron Waves in the Solar Wind. <i>Geophysical Monograph Series</i> , 2016 , 253-267	1.1	4
808	Characterizing the Enceladus Torus by Its Contribution to Saturn's Magnetosphere. <i>Geophysical Monograph Series</i> , 2016 , 345-354	1.1	
807	The substructure of a flux transfer event observed by the MMS spacecraft. <i>Geophysical Research Letters</i> , 2016 , 43, 9434-9443	4.9	21
806	A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. <i>Nature</i> , 2016 , 537, 515-517	50.4	143
805	MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line. <i>Geophysical Research Letters</i> , 2016 , 43, 6060-6069	4.9	76
804	ON ELECTRON-SCALE WHISTLER TURBULENCE IN THE SOLAR WIND. <i>Astrophysical Journal Letters</i> , 2016 , 827, L8	7.9	41
803	Stable reconnection at the dusk flank magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 9374-9382	24.9	5
802	Interplanetary shocks and foreshocks observed by STEREO during 2007 2 010. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 992-1008	2.6	25
801	Characterizing the low-altitude magnetic belt at Venus: Complementary observations from the Pioneer Venus Orbiter and Venus Express. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 2232-2240	2.6	13
800	Momentum transfer from solar wind to interplanetary field enhancements inferred from magnetic field draping signatures. <i>Geophysical Research Letters</i> , 2015 , 42, 1640-1645	4.9	12

(2015-2015)

799	Low-frequency waves within isolated magnetic clouds and complex structures: STEREO observations. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 2363-2381	2.6	10
798	Testing the estimated hypothetical response of a major CME impact on Earth and its implications to space weather. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 3432-3443	2.6	4
797	Spectral analysis of the quadrangles Av-13 and Av-14 on Vesta. <i>Icarus</i> , 2015 , 259, 181-193	3.8	9
796	Detection of new olivine-rich locations on Vesta. <i>Icarus</i> , 2015 , 258, 120-134	3.8	32
795	Vestall Pinaria region: Original basaltic achondrite material derived from mixing upper and lower crust. <i>Icarus</i> , 2015 , 259, 150-161	3.8	4
794	COMETARY SCIENCE. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko. <i>Science</i> , 2015 , 349, aaa5102	33.3	47
793	Composition of the northern regions of Vesta analyzed by the Dawn mission. <i>Icarus</i> , 2015 , 259, 53-71	3.8	22
792	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. <i>Science</i> , 2015 , 350, aad0210	33.3	131
791	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. <i>Science</i> , 2015 , 350, aad0459	33.3	77
790	Geomorphological evidence for transient water flow on Vesta. <i>Earth and Planetary Science Letters</i> , 2015 , 411, 151-163	5.3	36
7 ⁸ 9	Mineralogy of Marcia, the youngest large crater of Vesta: Character and distribution of pyroxenes and hydrated material. <i>Icarus</i> , 2015 , 248, 392-406	3.8	9
788	Separation of thermal inertia and roughness effects from Dawn/VIR measurements of Vesta surface temperatures in the vicinity of Marcia Crater. <i>Icarus</i> , 2015 , 262, 30-43	3.8	6
787	Reflectance properties and hydrated material distribution on Vesta: Global investigation of variations and their relationship using improved calibration of Dawn VIR mapping spectrometer. <i>Icarus</i> , 2015 , 259, 21-38	3.8	19
786	MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. <i>Geophysical Research Letters</i> , 2015 , 42, 9113-9120	4.9	46
7 ⁸ 5	Giant pulsations on the afternoonside: Geostationary satellite and ground observations. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 8350-8367	2.6	10
784	Eucritic crust remnants and the effect of in-falling hydrous carbonaceous chondrites characterizing the composition of Vesta® Marcia region. <i>Icarus</i> , 2015 , 259, 91-115	3.8	7
783	The spectral parameter maps of Vesta from VIR data. <i>Icarus</i> , 2015 , 259, 10-20	3.8	13
782	Mineralogical analysis of the Oppia quadrangle of asteroid (4) Vesta: Evidence for occurrence of moderate-reflectance hydrated minerals. <i>Icarus</i> , 2015 , 259, 129-149	3.8	14

781	Mineralogic mapping of the Av-9 Numisia quadrangle of Vesta. <i>Icarus</i> , 2015 , 259, 116-128	3.8	5
780	A statistical study of the low-altitude ionospheric magnetic fields over the north pole of Venus. <i>Journal of Geophysical Research: Space Physics</i> , 2015 , 120, 6218-6229	2.6	5
779	Vestall missing moons: Comprehensive search for natural satellites of Vesta by the Dawn spacecraft. <i>Icarus</i> , 2015 , 257, 207-216	3.8	7
778	Sublimation in bright spots on (1) Ceres. <i>Nature</i> , 2015 , 528, 237-40	50.4	105
777	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. <i>Nature</i> , 2015 , 528, 241-	450.4	226
776	Exogenic olivine on Vesta from Dawn Framing Camera color data. <i>Icarus</i> , 2015 , 258, 467-482	3.8	25
775	Compositional variations in the Vestan Rheasilvia basin. <i>Icarus</i> , 2015 , 259, 194-202	3.8	7
774	Hot flow anomaly remnant in the far geotail?. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2015 , 124, 39-43	2	7
773	The Dawn Mission to Vesta and Ceres 2015 ,		5
77 ²	International Sun Earth Explorers 1 & 2 2015 , 359-369		
77 ²	International Sun Earth Explorers 1 & 2 2015, 359-369 Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014, 119, 1272-1286	2.6	44
	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of</i>	2.6	44 25
771	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1272-1286 Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase	2	
771 770	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1272-1286 Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2014 , 107, 12-19	2	25
771 770 769	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1272-1286 Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2014 , 107, 12-19 Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. <i>Icarus</i> , 2014 , 244, 104-119. Imprint of the Rheasilvia impact on Vesta Geologic mapping of quadrangles Gegania and Lucaria.	2 93.8	25
771 770 769 768	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1272-1286 Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2014 , 107, 12-19 Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. <i>Icarus</i> , 2014 , 244, 104-119 Imprint of the Rheasilvia impact on Vesta Geologic mapping of quadrangles Gegania and Lucaria. <i>Icarus</i> , 2014 , 244, 60-73	2 93.8 3.8	25 12 12
771 770 769 768	Martian ionospheric responses to dynamic pressure enhancements in the solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 1272-1286 Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24?. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2014 , 107, 12-19 Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. <i>Icarus</i> , 2014 , 244, 104-119 Imprint of the Rheasilvia impact on Vesta Geologic mapping of quadrangles Gegania and Lucaria. <i>Icarus</i> , 2014 , 244, 60-73 The chronostratigraphy of protoplanet Vesta. <i>Icarus</i> , 2014 , 244, 158-165 Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data.	2 93.8 3.8 3.8	25 12 12 17

(2014-2014)

763	Reprint of: Resolved photometry of Vesta reveals physical properties of crater regolith. <i>Planetary and Space Science</i> , 2014 , 103, 66-81	2	13
762	Travel time classification of extreme solar events: Two families and an outlier. <i>Geophysical Research Letters</i> , 2014 , 41, 6590-6594	4.9	10
761	Crater depth-to-diameter distribution and surface properties of (4) vesta. <i>Planetary and Space Science</i> , 2014 , 103, 57-65	2	34
760	Morphology and formation ages of mid-sized post-Rheasilvia craters ©eology of quadrangle Tuccia, Vesta. <i>Icarus</i> , 2014 , 244, 133-157	3.8	27
759	Spectral diversity and photometric behavior of main-belt and near-Earth vestoids and (4) Vesta: A study in preparation for the Dawn encounter. <i>Icarus</i> , 2014 , 235, 60-74	3.8	16
758	Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images. <i>Icarus</i> , 2014 , 244, 41-59	3.8	26
757	The unique geomorphology and physical properties of the Vestalia Terra plateau. <i>Icarus</i> , 2014 , 244, 89-	1938	30
756	The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters. <i>Icarus</i> , 2014 , 244, 74-88	3.8	34
755	The contamination of the surface of Vesta by impacts and the delivery of the dark material. <i>Icarus</i> , 2014 , 240, 86-102	3.8	28
754	Photometric behavior of spectral parameters in Vesta dark and bright regions as inferred by the Dawn VIR spectrometer. <i>Icarus</i> , 2014 , 240, 20-35	3.8	46
753	Vestal north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes. <i>Icarus</i> , 2014 , 244, 13-22	3.8	11
752	Small crater populations on Vesta. <i>Planetary and Space Science</i> , 2014 , 103, 96-103	2	46
751	Geologic mapping of Vesta. Planetary and Space Science, 2014 , 103, 2-23	2	46
75°	The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. <i>Icarus</i> , 2014 , 240, 103-117	3.8	74
749	Constraining the cratering chronology of Vesta. <i>Planetary and Space Science</i> , 2014 , 103, 131-142	2	36
748	Lobate and flow-like features on asteroid Vesta. <i>Planetary and Space Science</i> , 2014 , 103, 24-35	2	36
747	Mass movement on Vesta at steep scarps and crater rims. <i>Icarus</i> , 2014 , 244, 120-132	3.8	42
746	The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. <i>Planetary and Space Science</i> , 2014 , 103, 104-130	2	68

745	The evolution of co-orbiting material in the orbit of 2201 Oljato from 1980 to 2012 as deduced from Pioneer Venus Orbiter and Venus Express magnetic records. <i>Meteoritics and Planetary Science</i> , 2014 , 49, 28-35	2.8	16
744	The plasma depletion layer in Saturn's magnetosheath. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 121-130	2.6	14
743	Small fresh impact craters on asteroid 4 Vesta: A compositional and geological fingerprint. <i>Journal of Geophysical Research E: Planets</i> , 2014 , 119, 771-797	4.1	11
742	Compositional evidence of magmatic activity on Vesta. <i>Geophysical Research Letters</i> , 2014 , 41, 3038-30	044 .9	12
741	Effects of crustal field rotation on the solar wind plasma interaction with Mars. <i>Geophysical Research Letters</i> , 2014 , 41, 6563-6569	4.9	63
740	Vesta surface thermal properties map. <i>Geophysical Research Letters</i> , 2014 , 41, 1438-1443	4.9	38
739	Can magnetopause reconnection drive Saturn's magnetosphere?. <i>Geophysical Research Letters</i> , 2014 , 41, 1862-1868	4.9	24
738	Structure of a reconnection layer poleward of the cusp: Extreme density asymmetry and a guide field. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 7343-7362	2.6	8
737	Generation and propagation of ion cyclotron waves in nonuniform magnetic field: Application to the corona and solar wind. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 8750-8763	2.6	4
736	Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research E: Planets, 2014 , 119, 2078-2108	4.1	32
735	A temporary earth co-orbital linked to interplanetary field enhancements. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2014 , 443, L109-L113	4.3	5
734	Generation of ion cyclotron waves in the corona and solar wind. <i>Journal of Geophysical Research:</i> Space Physics, 2014 , 119, 1442-1454	2.6	17
733	Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. <i>Meteoritics and Planetary Science</i> , 2014 , 49, 1831-1850	2.8	19
732	ELECTROMAGNETIC WAVES NEAR THE PROTON CYCLOTRON FREQUENCY:STEREOOBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 786, 123	4.7	54
731	MULTI-FLUID MODEL OF A SUN-GRAZING COMET IN THE RAPIDLY IONIZING, MAGNETIZED LOW CORONA. <i>Astrophysical Journal</i> , 2014 , 796, 42	4.7	7
730	Composition and mineralogy of dark material units on Vesta. <i>Icarus</i> , 2014 , 240, 58-72	3.8	36
729	Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. <i>Icarus</i> , 2014 , 240, 36-57	3.8	49
728	Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta. <i>Icarus</i> , 2014 , 244, 23-40	3.8	20

727	The geological nature of dark material on Vesta and implications for the subsurface structure. <i>Icarus</i> , 2014 , 240, 3-19	3.8	24
726	Asymmetric craters on Vesta: Impact on sloping surfaces. <i>Planetary and Space Science</i> , 2014 , 103, 36-56	2	25
725	International Sun-Earth Explorers 1 & 2 2014 , 1-10		
724	Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers. Journal of Geophysical Research: Space Physics, 2013 , 118, 3077-3086	2.6	35
723	Global photometric properties of Asteroid (4) Vesta observed with Dawn Framing Camera. <i>Icarus</i> , 2013 , 226, 1252-1274	3.8	61
722	Resolved photometry of Vesta reveals physical properties of crater regolith. <i>Planetary and Space Science</i> , 2013 , 85, 198-213	2	54
721	High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. <i>Planetary and Space Science</i> , 2013 , 85, 293-298	2	20
720	. IEEE Transactions on Magnetics, 2013 , 49, 5264-5269	2	3
719	Space experiments aboard the Lomonosov MSU satellite. Cosmic Research, 2013, 51, 427-433	0.6	7
718	Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta. <i>Icarus</i> , 2013 , 226, 1103-1114	3.8	31
717	How unprecedented a solar minimum was it?. Journal of Advanced Research, 2013, 4, 253-8	13	6
716	Olivine or impact melt: Nature of the Drangelmaterial on Vesta from Dawn. <i>Icarus</i> , 2013 , 226, 1568-159	4 3.8	44
715	Observations of narrowband ion cyclotron waves on the surface of the Moon in the terrestrial magnetotail. <i>Planetary and Space Science</i> , 2013 , 89, 21-28	2	5
714	Venus Express observations of ULF and ELF waves in the Venus ionosphere: Wave properties and sources. <i>Icarus</i> , 2013 , 226, 1527-1537	3.8	9
713	Electromagnetic waves observed on a flight over a Venus electrical storm. <i>Geophysical Research Letters</i> , 2013 , 40, 216-220	4.9	4
712	Long Term Variations in the Solar Wind of Importance to ULF Phenomena. <i>Geophysical Monograph Series</i> , 2013 , 67-74	1.1	3
711	Reconnexion. Special Publications, 2013, 526-540		4
710	Near-Tail Reconnection as the Cause of Cometary Tail Disconnections. <i>Special Publications</i> , 2013 , 1417-	1423	

709	Simultaneous Observation of Pc 3,4 Pulsations in the Magnetosphere and at Multiple Ground Stations. <i>Geophysical Monograph Series</i> , 2013 , 311-323	1.1	7
708	The Structure of the Magnetopause. <i>Geophysical Monograph Series</i> , 2013 , 81-98	1.1	22
707	The Magnetic Field Turbulence at Comet Halley Observed by Vega 1 and 2. <i>Geophysical Monograph Series</i> , 2013 , 273-276	1.1	
706	Dayside Electrodynamics Observed by Polar with Northward IMF. <i>Geophysical Monograph Series</i> , 2013 , 13-23	1.1	
705	A Parametric Study of the Solar Wind Interaction with Comets. <i>Geophysical Monograph Series</i> , 2013 , 65-	72 1	2
704	High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. <i>Nature Geoscience</i> , 2013 , 6, 303-307	18.3	95
703	Dawn completes its mission at 4 Vesta. <i>Meteoritics and Planetary Science</i> , 2013 , 48, 2076-2089	2.8	43
702	Mirror-mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 17-28	2.6	11
701	A global multispecies single-fluid MHD study of the plasma interaction around Venus. <i>Journal of Geophysical Research: Space Physics</i> , 2013 , 118, 321-330	2.6	36
700	Solar wind observations at STEREO: 2007 - 2011 2013 ,		26
699	Solar wind observations at STEREO: 2007 - 2011 2013 , STEREO interplanetary shocks and foreshocks 2013 ,		26
699	STEREO interplanetary shocks and foreshocks 2013 , Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with	2	4
699 698	STEREO interplanetary shocks and foreshocks 2013, Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup 2013,	2 2.8	7
699 698 697	STEREO interplanetary shocks and foreshocks 2013 , Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup 2013 , Statistical study of foreshock cavitons. <i>Annales Geophysicae</i> , 2013 , 31, 2163-2178		4 7 24
699 698 697	STEREO interplanetary shocks and foreshocks 2013, Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup 2013, Statistical study of foreshock cavitons. <i>Annales Geophysicae</i> , 2013, 31, 2163-2178 Distribution of iron on Vesta. <i>Meteoritics and Planetary Science</i> , 2013, 48, 2237-2251 Lithologic mapping of HED terrains on Vesta using Dawn Framing Camera color data. <i>Meteoritics</i>	2.8	4 7 24 31
699 698 697 696	STEREO interplanetary shocks and foreshocks 2013, Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup 2013, Statistical study of foreshock cavitons. <i>Annales Geophysicae</i> , 2013, 31, 2163-2178 Distribution of iron on Vesta. <i>Meteoritics and Planetary Science</i> , 2013, 48, 2237-2251 Lithologic mapping of HED terrains on Vesta using Dawn Framing Camera color data. <i>Meteoritics and Planetary Science</i> , 2013, 48, 2199-2210 Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. <i>Meteoritics and</i>	2.8	4 7 24 31 23

(2012-2013)

691	Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. <i>Meteoritics and Planetary Science</i> , 2013 , 48, 2300-2315	2.8	55
690	Neutron absorption constraints on the composition of 4 Vesta. <i>Meteoritics and Planetary Science</i> , 2013 , 48, 2211-2236	2.8	44
689	Olivine in an unexpected location on Vesta's surface. <i>Nature</i> , 2013 , 504, 122-5	50.4	78
688	THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES. <i>Astrophysical Journal</i> , 2013 , 770, 38	4.7	103
687	Planetary Upstream Waves. <i>Geophysical Monograph Series</i> , 2013 , 75-86	1.1	5
686	The Morphology of ULF Waves in the Earth's Foreshock. <i>Geophysical Monograph Series</i> , 2013 , 87-98	1.1	30
685	Wave Activity Associated with the Low Beta Collisionless Shock. <i>Geophysical Monograph Series</i> , 2013 , 99-106	1.1	3
684	Mass-wasting features and processes in Vesta's south polar basin Rheasilvia. <i>Journal of Geophysical Research E: Planets</i> , 2013 , 118, 2279-2294	4.1	24
683	Solar Wind and Interplanetary Magnetic Field: A Tutorial. <i>Geophysical Monograph Series</i> , 2013 , 73-89	1.1	21
682	Composition of the Rheasilvia basin, a window into Vesta's interior. <i>Journal of Geophysical Research E: Planets</i> , 2013 , 118, 335-346	4.1	76
681	The Pioneer Venus Mission. <i>Geophysical Monograph Series</i> , 2013 , 225-236	1.1	5
680	Giant flux ropes observed in the magnetized ionosphere at Venus. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	14
679	Observations of ICMEs and ICME-like Solar Wind Structures from 2007 I2010 Using Near-Earth and STEREO Observations. <i>Solar Physics</i> , 2012 , 281, 391	2.6	28
678	High resolution Vesta High Altitude Mapping Orbit (HAMO) Atlas derived from Dawn framing camera images. <i>Planetary and Space Science</i> , 2012 , 73, 283-286	2	48
677	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		107
676	Elemental mapping by Dawn reveals exogenic H in Vesta's regolith. <i>Science</i> , 2012 , 338, 242-6	33.3	181
675	Pitted terrain on Vesta and implications for the presence of volatiles. <i>Science</i> , 2012 , 338, 246-9	33.3	82
674	Interpreting some properties of CIRs and their associated shocks during the last two solar minima using global MHD simulations. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2012 , 83, 11-21	2	10

673	Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		48
672	Observations of quasi-perpendicular propagating electromagnetic waves near the ionopause current sheet of Venus. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		1
671	Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections. Journal of Geophysical Research, 2012 , 117, n/a-n/a		48
670	Whistler mode bursts in the Venus ionosphere due to lightning: Statistical properties using Venus Express magnetometer observations. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		10
669	The importance of plasma Itonditions for magnetic reconnection at Saturn's magnetopause. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	98
668	Large-scale troughs on Vesta: A signature of planetary tectonics. <i>Geophysical Research Letters</i> , 2012 , 39,	4.9	52
667	Saturn⊠ high degree magnetic moments: Evidence for a unique planetary dynamo. <i>Icarus</i> , 2012 , 221, 388-394	3.8	31
666	Delivery of dark material to Vesta via carbonaceous chondritic impacts. <i>Icarus</i> , 2012 , 221, 544-559	3.8	139
665	DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION. <i>Astrophysical Journal Letters</i> , 2012 , 758, L36	7.9	103
664	Dawn at Vesta: testing the protoplanetary paradigm. <i>Science</i> , 2012 , 336, 684-6	33.3	356
663	A statistical analysis of the association between fast plasma flows and Pi2 pulsations. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		20
662	Vesta's shape and morphology. <i>Science</i> , 2012 , 336, 687-90	33.3	183
661	The geologically recent giant impact basins at Vesta's south pole. <i>Science</i> , 2012 , 336, 694-7	33.3	161
660	Spectroscopic characterization of mineralogy and its diversity across Vesta. <i>Science</i> , 2012 , 336, 697-700	33.3	209
659	The violent collisional history of asteroid 4 Vesta. <i>Science</i> , 2012 , 336, 690-4	33.3	178
658	Color and albedo heterogeneity of Vesta from Dawn. <i>Science</i> , 2012 , 336, 700-4	33.3	147
657	Magnetic reconnection in the near Venusian magnetotail. Science, 2012, 336, 567-70	33.3	87
656	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. <i>Experimental Astronomy</i> , 2012 , 33, 753-791	1.3	36

(2011-2012)

655	The Radial Variation of Interplanetary Shocks in the Inner Heliosphere: Observations by Helios, MESSENGER, and STEREO. <i>Solar Physics</i> , 2012 , 278, 421-433	2.6	7
654	Foreword. The Lunar Crater Observation Sensing Satellite (LCROSS). <i>Space Science Reviews</i> , 2012 , 167, 1-2	7.5	2
653	Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: Evidence for organized behavior at high altitudes. <i>Icarus</i> , 2012 , 217, 43-54	3.8	8
652	Perpendicular flow deviation in a magnetized counter-streaming plasma. <i>Icarus</i> , 2012 , 218, 895-905	3.8	17
651	Investigating magnetospheric interaction effects on Titan ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys. <i>Icarus</i> , 2012 , 219, 534-555	3.8	15
650	On the relationship between magnetic cloud field polarity and geoeffectiveness. <i>Annales Geophysicae</i> , 2012 , 30, 1037-1050	2	26
649	NetPICOmag: A low-cost networked magnetometer and its applications. <i>Earth, Planets and Space</i> , 2012 , 64, 279-297	2.9	1
648	Distinctive space weathering on Vesta from regolith mixing processes. <i>Nature</i> , 2012 , 491, 79-82	50.4	97
647	First resolved observations of the demagnetized electron-diffusion region of an astrophysical magnetic-reconnection site. <i>Physical Review Letters</i> , 2012 , 108, 225005	7.4	48
646	Dark material on Vesta from the infall of carbonaceous volatile-rich material. <i>Nature</i> , 2012 , 491, 83-6	50.4	134
646	Dark material on Vesta from the infall of carbonaceous volatile-rich material. <i>Nature</i> , 2012 , 491, 83-6 In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003	50.4	134
	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift		
645	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003 Whistler waves associated with weak interplanetary shocks. <i>Journal of Geophysical Research</i> , 2012 ,		12
645	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003 Whistler waves associated with weak interplanetary shocks. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. <i>Journal</i>		12
645 644 643	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003 Whistler waves associated with weak interplanetary shocks. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. <i>Journal of Geophysical Research</i> , 2011 , 116, Interactions of the heliospheric current and plasma sheets with the bow shock: Cluster and Polar		12 20 31
645 644 643	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003 Whistler waves associated with weak interplanetary shocks. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. <i>Journal of Geophysical Research</i> , 2011 , 116, Interactions of the heliospheric current and plasma sheets with the bow shock: Cluster and Polar observations in the magnetosheath. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a Far tail (255 RE) fast response to very weak magnetic activity. <i>Journal of Geophysical Research</i> , 2011		12 20 31 4
645 644 643 642	In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument. <i>Measurement Science and Technology</i> , 2012 , 23, 105003 Whistler waves associated with weak interplanetary shocks. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. <i>Journal of Geophysical Research</i> , 2011 , 116, Interactions of the heliospheric current and plasma sheets with the bow shock: Cluster and Polar observations in the magnetosheath. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a Far tail (255 RE) fast response to very weak magnetic activity. <i>Journal of Geophysical Research</i> , 2011 , 116, Uneven compression levels of Earth's magnetic fields by shocked solar wind. <i>Journal of Geophysical</i>		12 20 31 4

637	Intense plasma wave emissions associated with Saturn's moon Rhea. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	26
636	Probing Saturn's ion cyclotron waves on high-inclination orbits: Lessons for wave generation. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		15
635	Dual observations of interplanetary shocks associated with stream interaction regions. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		9
634	The importance of thermal electron heating in Titan's ionosphere: Comparison with Cassini T34 flyby. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		11
633	Periodic motion of Saturn's nightside plasma sheet. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		82
632	Multisatellite observations of a giant pulsation event. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/	⁄a	38
631	Saturn's very axisymmetric magnetic field: No detectable secular variation or tilt. <i>Earth and Planetary Science Letters</i> , 2011 , 304, 22-28	5.3	64
630	Revised timing and onset location of two isolated substorms observed by Time History of Events and Macroscale Interactions During Substorms (THEMIS). <i>Journal of Geophysical Research</i> , 2011 , 116,		10
629	THEMIS observations of double-onset substorms and their association with IMF variations. <i>Annales Geophysicae</i> , 2011 , 29, 591-611	2	4
628	Interplanetary conditions: lessons from this minimum. <i>Proceedings of the International Astronomical Union</i> , 2011 , 7, 168-178	0.1	2
627	Comparative study of ion cyclotron waves at Mars, Venus and Earth. <i>Planetary and Space Science</i> , 2011 , 59, 1039-1047	2	26
626	Venus lightning: Comparison with terrestrial lightning. <i>Planetary and Space Science</i> , 2011 , 59, 965-973	2	26
625	Ultraviolet spectroscopy of Asteroid (4) Vesta. <i>Icarus</i> , 2011 , 216, 640-649	3.8	10
624	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. <i>Space Science Reviews</i> , 2011 , 165, 93-107	7.5	41
623	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91	7.5	40
622	Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU. <i>Solar Physics</i> , 2011 , 274, 321-344	2.6	110
621	Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016 12018. <i>Solar Physics</i> , 2011 , 273, 179-203	2.6	49
620	The Dawn Mission to Vesta and Ceres. <i>Space Science Reviews</i> , 2011 , 163, 3-23	7.5	162

(2010-2011)

619	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. <i>Space Science Reviews</i> , 2011 , 164, 1-83	7.5	39
618	Improved measurement of Asteroid (4) Vestall rotational axis orientation. <i>Icarus</i> , 2011 , 211, 528-534	3.8	18
617	Unusually strong magnetic fields in Titan ionosphere: T42 case study. <i>Advances in Space Research</i> , 2011 , 48, 314-322	2.4	11
616	Dipolarization fronts in the magnetotail plasma sheet. <i>Planetary and Space Science</i> , 2011 , 59, 517-525	2	63
615	Multi-spacecraft study of foreshock cavitons upstream of the quasi-parallel bow shock. <i>Planetary and Space Science</i> , 2011 , 59, 705-714	2	32
614	Evidence of a global magma ocean in lo's interior. <i>Science</i> , 2011 , 332, 1186-9	33.3	92
613	Multipoint ICME encounters: Pre-STEREO and STEREO observations. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2011 , 73, 1228-1241	2	57
612	A SEARCH FOR SATELLITES AROUND CERES. Astronomical Journal, 2011 , 141, 197	4.9	2
611	Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation. <i>Annales Geophysicae</i> , 2011 , 29, 619-622	2	29
610	The Dawn Mission to Vesta and Ceres 2011 , 3-23		16
609	ARTEMIS Science Objectives 2011 , 27-59		4
609	ARTEMIS Science Objectives 2011 , 27-59 Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. <i>Annales Geophysicae</i> , 2010 , 28, 233-246	2	4
	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO	2	
608	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. <i>Annales Geophysicae</i> , 2010 , 28, 233-246	2	22
608	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. <i>Annales Geophysicae</i> , 2010 , 28, 233-246 Analysis of waves surrounding foreshock cavitons 2010 ,	2	12
608 607 606	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. <i>Annales Geophysicae</i> , 2010 , 28, 233-246 Analysis of waves surrounding foreshock cavitons 2010 , Mirror Mode Structures in the Solar Wind: STEREO Observations 2010 , THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection.	2	22 12 5
608 607 606	Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations. <i>Annales Geophysicae</i> , 2010 , 28, 233-246 Analysis of waves surrounding foreshock cavitons 2010 , Mirror Mode Structures in the Solar Wind: STEREO Observations 2010 , THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a Hybrid simulations of the plasma environment around Enceladus. <i>Journal of Geophysical Research</i> ,	2	22 12 5 42

601	Cassini observations of narrowband radio emissions in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		18
600	Interaction of Saturn's magnetosphere and its moons: 2. Shape of the Enceladus plume. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		10
599	Precursor activation and substorm expansion associated with observations of a dipolarization front by Time History of Events and Macroscale Interactions during Substorms (THEMIS). <i>Journal of Geophysical Research</i> , 2010 , 115,		16
598	Harmonic growth of ion-cyclotron waves in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		10
597	Galileo constraints on the secular variation of the Jovian magnetic field. <i>Journal of Geophysical Research</i> , 2010 , 115,		16
596	Upper limits on Titan's magnetic moment and implications for its interior. <i>Journal of Geophysical Research</i> , 2010 , 115,		19
595	How unprecedented a solar minimum?. Reviews of Geophysics, 2010, 48,	23.1	110
594	Interplanetary field enhancements travel at the solar wind speed. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	7
593	Time-varying magnetospheric environment near Enceladus as seen by the Cassini magnetometer. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	18
592	Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	51
591	Escape of O+ through the distant tail plasma sheet. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	15
590	Saturn's internal planetary magnetic field. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	80
589	Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plume. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		11
588	Multipoint connectivity analysis of the May 2007 solar energetic particle events. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		7
587	Pressure changes associated with substorm depolarization in the near-Earth plasma sheet. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		14
586	Observations of ion cyclotron waves in the solar wind near 0.3 AU. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		62
585	An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1-D hybrid simulation results. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		15
584	THEMIS observations of two substorms on February 26, 2008. <i>Science China Technological Sciences</i> , 2010 , 53, 1328-1337	3.5	4

(2009-2010)

583	Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23. <i>Solar Physics</i> , 2010 , 263, 239-261	2.6	9
582	Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B. <i>Solar Physics</i> , 2010 , 266, 369-377	2.6	5
581	Magnetic Fields of the Outer Planets. Space Science Reviews, 2010, 152, 251-269	7.5	45
580	Titan's highly dynamic magnetic environment: A systematic survey of Cassini magnetometer observations from flybys TAII62. <i>Planetary and Space Science</i> , 2010 , 58, 1230-1251	2	64
579	Reconnection sites in Jupiter magnetotail and relation to Jovian auroras. <i>Planetary and Space Science</i> , 2010 , 58, 1455-1469	2	24
578	Dynamics of Saturn's magnetodisk near Titan's orbit: Comparison of Cassini magnetometer observations from real and virtual Titan flybys. <i>Planetary and Space Science</i> , 2010 , 58, 1625-1635	2	21
577	Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan. <i>Icarus</i> , 2010 , 206, 174-181	3.8	17
576	Photometric mapping of Asteroid (4) Vestall southern hemisphere with Hubble Space Telescope. <i>Icarus</i> , 2010 , 208, 238-251	3.8	75
575	ION CYCLOTRON WAVES IN THE SOLAR WIND OBSERVED BY STEREO NEAR 1 AU. <i>Astrophysical Journal</i> , 2009 , 701, L105-L109	4.7	106
574	Model of Saturn's internal planetary magnetic field based on Cassini observations. <i>Planetary and Space Science</i> , 2009 , 57, 1706-1713	2	41
573	Multispacecraft Observations of Magnetic Clouds and Their Solar Origins between 19 and 23 May 2007. <i>Solar Physics</i> , 2009 , 254, 325-344	2.6	62
572	Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R E. <i>Solar Physics</i> , 2009 , 256, 379-392	2.6	30
571	Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period. <i>Solar Physics</i> , 2009 , 256, 345-363	2.6	48
570	Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams. <i>Solar Physics</i> , 2009 , 256, 285-305	2.6	57
569	Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure. <i>Solar Physics</i> , 2009 , 256, 327-344	2.6	59
568	In Situ Observations of Solar Wind Stream Interface Evolution. <i>Solar Physics</i> , 2009 , 259, 323-344	2.6	17
567	Multi-Spacecraft Observations: Stream Interactions and Associated Structures. <i>Solar Physics</i> , 2009 , 259, 345-360	2.6	27
566	Plasma electrons in Saturn's magnetotail: Structure, distribution and energisation. <i>Planetary and Space Science</i> , 2009 , 57, 2032-2047	2	38

565	THEMIS observation of a substorm event on 04:35, 22 February 2008. <i>Annales Geophysicae</i> , 2009 , 27, 1831-1841	2	14
564	Comment on "Tail reconnection triggering substorm onset". <i>Science</i> , 2009 , 324, 1391	33.3	45
563	An unusual current sheet in an ICME: Possible association with C/2006 P1 (McNaught). <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	5
562	Fine jet structure of electrically charged grains in Enceladus' plume. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	79
561	Rotation period of Jupiter from the observation of its magnetic field. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	13
560	Disappearing induced magnetosphere at Venus: Implications for close-in exoplanets. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	38
559	Plasma environment at Titan's orbit with Titan present and absent. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	22
558	Mirror mode structures in the solar wind at 0.72 AU. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		36
557	Reply to comment by K. Liou and YL. Zhang on Wavelet-based ULF wave diagnosis of substorm expansion phase onset[] <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		9
556	Collisionless relaxation of ion distributions downstream of laminar quasi-perpendicular shocks. Journal of Geophysical Research, 2009, 114, n/a-n/a		46
555	Coronal magnetic field analysis with Faraday rotation observations of Alfven waves. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	5
554	STEREO observations of shock formation in the solar wind. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-r	1 /4 .9	16
553	Substorm onset timing via traveltime magnetoseismology. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	18
552	STEREO observations of upstream and downstream waves at low Mach number shocks. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	30
551	Mirror-mode storms: STEREO observations of protracted generation of small amplitude waves. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	14
550	Sources of rotational signals in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		70
549	Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		76
548	THEMIS observations of consecutive bursts of Pi2 pulsations: The 20 April 2007 event. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		4

(2008-2009)

547	Wavelet-based ULF wave diagnosis of substorm expansion phase onset. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		34
546	Timing and localization of near-Earth tail and ionospheric signatures during a substorm onset. Journal of Geophysical Research, 2009 , 114, n/a-n/a		21
545	Determining ion production rates near Saturn's extended neutral cloud from ion cyclotron wave amplitudes. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		15
544	Time-dependent global MHD simulations of Cassini T32 flyby: From magnetosphere to magnetosheath. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		4º
543	Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		14
542	Timing and localization of ionospheric signatures associated with substorm expansion phase onset. Journal of Geophysical Research, 2009, 114, n/a-n/a		51
541	A state-of-the-art picture of substorm-associated evolution of the near-Earth magnetotail obtained from superposed epoch analysis. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		96
540	Near-Earth initiation of a terrestrial substorm. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		57
539	STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL. Astrophysical Journal, 2009 , 696, L56-L60	4.7	16
538	Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations. <i>Annales Geophysicae</i> , 2009 , 27, 2259-2275	2	71
537	Solar wind ion trends and signatures: STEREO PLASTIC observations approaching solar minimum. <i>Annales Geophysicae</i> , 2009 , 27, 3909-3922	2	11
536	Fundamental Plasma Processes in Saturn's Magnetosphere 2009 , 281-331		57
535	Faraday rotation observations of CMEs. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	17
534	Discovery of very large amplitude whistler-mode waves in Earth's radiation belts. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	221
533	First upstream proton cyclotron wave observations at Venus. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	37
532	Flux transfer events simultaneously observed by Polar and Cluster: Flux rope in the subsolar region and flux tube addition to the polar cusp. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		11
531	Use of the Wigner-Ville distribution in interpreting and identifying ULF waves in triaxial magnetic records. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		11
530	Saturn's magnetodisc current sheet. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		86

529	Plasmoids in Saturn's magnetotail. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		78
528	Warping of Saturn's magnetospheric and magnetotail current sheets. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		132
527	An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. <i>Measurement Science and Technology</i> , 2008 , 19, 055104	2	49
526	Turbulent heating and cross-field transport near the magnetopause from THEMIS. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	76
525	Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	65
524	Titan influence on Saturnian substorm occurrence. Geophysical Research Letters, 2008, 35, n/a-n/a	4.9	38
523	Mirror mode waves: Messengers from the coronal heating region. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	40
522	Highly periodic stormtime activations observed by THEMIS prior to substorm onset. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	3
521	Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	74
520	Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	25
519	One-dimensional hybrid simulations of planetary ion pickup: Effects of variable plasma and pickup conditions. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		16
518	Large-scale dynamics of Saturn's magnetopause: Observations by Cassini. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		83
517	A multi-instrument view of tail reconnection at Saturn. Journal of Geophysical Research, 2008, 113, n/a-	n/a	47
516	Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. <i>Journal of Geophysical Research</i> , 2008 , 113,		35
515	Venus Express observations of an atypically distant bow shock during the passage of an interplanetary coronal mass ejection. <i>Journal of Geophysical Research</i> , 2008 , 113,		17
514	Whistler mode waves from lightning on Venus: Magnetic control of ionospheric access. <i>Journal of Geophysical Research</i> , 2008 , 113,		37
513	Induced magnetosphere and its outer boundary at Venus. <i>Journal of Geophysical Research</i> , 2008 , 113,		38
512	Ionospheric localisation and expansion of long-period Pi1 pulsations at substorm onset. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	40

(2008-2008)

511	The dust halo of Saturn's largest icy moon, Rhea. <i>Science</i> , 2008 , 319, 1380-4	33.3	50
510	Tail reconnection triggering substorm onset. <i>Science</i> , 2008 , 321, 931-5	33.3	464
509	Reconstruction of the 2007 May 22 Magnetic Cloud: How Much Can We Trust the Flux-Rope Geometry of CMEs?. <i>Astrophysical Journal</i> , 2008 , 677, L133-L136	4.7	73
508	Stream Interactions and Interplanetary Coronal Mass Ejections at 0.72 AU. <i>Solar Physics</i> , 2008 , 249, 85-	1 <u>0</u>1 6	37
507	Stream Interactions and Interplanetary Coronal Mass Ejections at 5.3 AU near the Solar Ecliptic Plane. <i>Solar Physics</i> , 2008 , 250, 375-402	2.6	34
506	STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview. <i>Space Science Reviews</i> , 2008 , 136, 117-184	7.5	226
505	The STEREO/IMPACT Magnetic Field Experiment. Space Science Reviews, 2008, 136, 203-226	7.5	178
504	THEMIS Ground Based Observatory System Design. Space Science Reviews, 2008, 141, 213-233	7.5	19
503	THEMIS Ground-Based Magnetometers. Space Science Reviews, 2008, 141, 389-412	7.5	108
502	First Results from the THEMIS Mission. Space Science Reviews, 2008, 141, 453-476	7.5	143
501	The THEMIS Array of Ground-based Observatories for the Study of Auroral Substorms. <i>Space Science Reviews</i> , 2008 , 141, 357-387	7.5	251
500	The Upgraded CARISMA Magnetometer Array in the THEMIS Era. Space Science Reviews, 2008, 141, 413	3- <i>4</i> /551	213
499	The Time History of Events and Macroscale Interactions during Substorms (THEMIS) Education and Outreach (E/PO) Program. <i>Space Science Reviews</i> , 2008 , 141, 557-583	7.5	12
498	Location of the bow shock and ion composition boundaries at VenusIhitial determinations from Venus Express ASPERA-4. <i>Planetary and Space Science</i> , 2008 , 56, 780-784	2	52
497	Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. <i>Planetary and Space Science</i> , 2008 , 56, 785-789	2	57
496	Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. <i>Planetary and Space Science</i> , 2008 , 56, 790-795	2	55
495	Evolution of solar wind structures from 0.72 to 1AU. Advances in Space Research, 2008, 41, 259-266	2.4	32
494	Electromagnetic waves observed by Venus Express at periapsis: Detection and analysis techniques. <i>Advances in Space Research</i> , 2008 , 41, 113-117	2.4	8

493	Magnetic portraits of Tethys and Rhea. <i>Icarus</i> , 2008 , 193, 465-474	3.8	51
492	1D hybrid simulations of planetary ion-pickup: Energy partition. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	15
491	Mass of Saturn's magnetodisc: Cassini observations. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	55
490	Mass loading of Saturn's magnetosphere near Enceladus. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		63
489	One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: Application to ion pickup at Io. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		11
488	Measuring the stress state of the Saturnian magnetosphere. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	11
487	Strong rapid dipolarizations in Saturn's magnetotail: In situ evidence of reconnection. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	91
486	Cold ionospheric plasma in Titan's magnetotail. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	23
485	Determination of substorm onset timing and location using the THEMIS ground based observatories. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	17
484	Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending > 4.26 🗈 06 km in the solar wind at 1 AU. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	43
483	3D global multi-species Hall-MHD simulation of the Cassini T9 flyby. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	49
482	Cassini observations of the variation of Saturn's ring current parameters with system size. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		104
481	Interaction of the bow shock with a tangential discontinuity and solar wind density decrease: Observations of predicted fast mode waves and magnetosheath merging. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		20
480	On the 60-year signal from the core. <i>Geophysical and Astrophysical Fluid Dynamics</i> , 2007 , 101, 11-35	1.4	48
479	Growth phase of Jovian substorms. <i>Geophysical Research Letters</i> , 2007 , 34, n/a-n/a	4.9	17
478	Coupling of system resource margins through the use of electric propulsion: Implications in preparing for the Dawn mission to Ceres and Vesta. <i>Acta Astronautica</i> , 2007 , 60, 930-938	2.9	37
477	The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. <i>Planetary and Space Science</i> , 2007 , 55, 1772-1792	2	175
476	Lightning on Venus inferred from whistler-mode waves in the ionosphere. <i>Nature</i> , 2007 , 450, 661-2	50.4	82

475	Little or no solar wind enters Venus' atmosphere at solar minimum. <i>Nature</i> , 2007 , 450, 654-6	50.4	70
474	The loss of ions from Venus through the plasma wake. <i>Nature</i> , 2007 , 450, 650-3	50.4	139
473	Dawn Mission to Vesta and Ceres. Earth, Moon and Planets, 2007, 101, 65-91	0.6	104
472	Upstream whistler-mode waves at planetary bow shocks: A brief review. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2007 , 69, 1739-1746	2	19
471	Ion-cyclotron wave generation by planetary ion pickup. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2007 , 69, 1723-1738	2	19
470	Space weather at Venus and its potential consequences for atmosphere evolution. <i>Journal of Geophysical Research</i> , 2007 , 112,		47
469	Venus Upper Atmosphere and Plasma Environment: Critical Issues for Future Exploration. <i>Geophysical Monograph Series</i> , 2007 , 139-156	1.1	9
468	Experiencing Venus: Clues to the Origin, Evolution, and Chemistry of Terrestrial Planets Via In-Situ Exploration of Our Sister World. <i>Geophysical Monograph Series</i> , 2007 , 171-189	1.1	6
467	Ceres: High-resolution imaging with HST and the determination of physical properties. <i>Advances in Space Research</i> , 2006 , 38, 2039-2042	2.4	12
466	Dawn Discovery mission to Vesta and Ceres: Present status. <i>Advances in Space Research</i> , 2006 , 38, 2043	-20 4 8	22
465	ULF waves and their influence on bow shock and magnetosheath structures. <i>Advances in Space Research</i> , 2006 , 37, 1522-1531	2.4	17
464	Polar survey of magnetic field in near tail: Reconnection rare inside 9 RE. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	17
463	Ion cyclotron waves in Saturn's E ring: Initial Cassini observations. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	60
462	Large-amplitude electrostatic waves associated with magnetic ramp substructure at Earth's bow shock. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	31
461	Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft. Journal of Geophysical Research, 2006 , 111,		46
460	Dependence of flux transfer events on solar wind conditions from 3 years of Cluster observations. Journal of Geophysical Research, 2006, 111,		33
459	Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. Journal of Geophysical Research, 2006 , 111,		69
458	Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure. <i>Journal of Geophysical Research</i> , 2006 , 111,		126

457	Tamao travel time of sudden impulses and its relationship to ionospheric convection vortices. Journal of Geophysical Research, 2006 , 111,		28
456	Ceres, Vesta, and Pallas: Protoplanets, not asteroids. <i>Eos</i> , 2006 , 87, 105	1.5	21
455	Proton cyclotron waves at Mars: Exosphere structure and evidence for a fast neutral disk. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	32
454	Magnetospheric current systems during stormtime sawtooth events. <i>Journal of Geophysical Research</i> , 2006 , 111,		35
453	Titan's near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. <i>Journal of Geophysical Research</i> , 2006 , 111,		77
452	Nature of magnetic fluctuations in Saturn's middle magnetosphere. <i>Journal of Geophysical Research</i> , 2006 , 111,		44
451	Mirror mode structures in the Jovian magnetosheath. <i>Journal of Geophysical Research</i> , 2006 , 111,		73
450	One-dimensional hybrid simulations of planetary ion pickup: Techniques and verification. <i>Journal of Geophysical Research</i> , 2006 , 111,		12
449	Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. <i>Science</i> , 2006 , 311, 1406-9	33.3	297
448	A regular period for Saturn's magnetic field that may track its internal rotation. <i>Nature</i> , 2006 , 441, 62-4	50.4	103
447	Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres. <i>Acta Astronautica</i> , 2006 , 58, 605-616	2.9	151
446	Proton cyclotron waves at Mars and Venus. Advances in Space Research, 2006, 38, 745-751	2.4	30
445	Photometric analysis of 1 Ceres and surface mapping from HST observations. <i>Icarus</i> , 2006 , 182, 143-160	3.8	112
444	Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express. <i>Planetary and Space Science</i> , 2006 , 54, 1336-1343	2	208
443	The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. <i>Planetary and Space Science</i> , 2006 , 54, 1482-1495	2	75
442	Lightning detection on the Venus Express mission. <i>Planetary and Space Science</i> , 2006 , 54, 1344-1351	2	20
441	Properties of Stream Interactions at One AU During 1995 12004. Solar Physics, 2006, 239, 337-392	2.6	192
440	Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 12004. <i>Solar Physics</i> , 2006 , 239, 393-436	2.6	244

439	AlfvBic Electron Acceleration in Aurora Occurs in Global AlfvB Resonosphere Region. <i>Space Science Reviews</i> , 2006 , 122, 89-95	7.5	18	
438	On the relationships between double-onset substorm, pseudobreakup, and IMF variation: The 4 September 1999 event. <i>Journal of Geophysical Research</i> , 2005 , 110,		9	
437	Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	42	
436	On the source of Pc1-2 waves in the plasma mantle. <i>Journal of Geophysical Research</i> , 2005 , 110,		15	
435	Structure of the magnetic pileup boundary at Mars and Venus. <i>Journal of Geophysical Research</i> , 2005 , 110,		50	
434	Electron signatures of active merging sites on the magnetopause. <i>Journal of Geophysical Research</i> , 2005 , 110,		2	
433	On the possibility of fast neutral production of the inner Io torus. <i>Journal of Geophysical Research</i> , 2005 , 110,		2	
432	Dual-satellite observations of the motions of flux transfer events: Statistical analysis with ISEE 1 and ISEE 2. <i>Journal of Geophysical Research</i> , 2005 , 110,		11	
431	Some properties of Alfvii waves: Observations in the tail lobes and the plasma sheet boundary layer. <i>Journal of Geophysical Research</i> , 2005 , 110,		47	
430	Heliospheric energetic particle observations during the OctoberNovember 2003 events. <i>Journal of Geophysical Research</i> , 2005 , 110,		38	
429	Polar study of ionospheric ion outflow versus energy input. <i>Journal of Geophysical Research</i> , 2005 , 110,		43	
428	Variability in Saturn's bow shock and magnetopause from Pioneer and Voyager: Probabilistic predictions and initial observations by Cassini. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	17	
427	Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small-scale plasma transport in the magnetosphere. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n	/ å ·9	41	
426	Warm flux tubes in the E-ring plasma torus: Initial Cassini magnetometer observations. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	31	
425	Ion cyclotron waves in the Saturnian magnetosphere associated with Cassini's engine exhaust. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	4	
424	Travel-time magnetoseismology: Magnetospheric sounding by timing the tremors in space. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	24	
423	Pi2 pulsations observed from the Polar satellite outside the plasmapause. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	20	
422	Pc 1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. <i>Journal of Geophysical Research</i> , 2005 , 110,		54	

421	Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from 3 years of Cluster observations. <i>Journal of Geophysical Research</i> , 2005 , 110,		45
420	Comment on Bteady state slow shock inside the Earth's magnetosheath: To be or not to be? 1. The original observation revisited by D. Hubert and A. Samsonov. <i>Journal of Geophysical Research</i> , 2005 , 110,		3
419	Macrostructure of collisionless bow shocks: 1. Scale lengths. <i>Journal of Geophysical Research</i> , 2005 , 110,		63
418	Storm-substorm coupling during 16 Hours of Dst steadily at \$150 nT. <i>Geophysical Monograph Series</i> , 2005 , 155-161	1.1	4
417	Dawn Discovery Mission: Symbiosis with 1 AU Observations. <i>Highlights of Astronomy</i> , 2005 , 13, 730-736		1
416	IMPACT: Science goals and firsts with STEREO. Advances in Space Research, 2005, 36, 1534-1543	2.4	21
415	Differentiation of the asteroid Ceres as revealed by its shape. <i>Nature</i> , 2005 , 437, 224-6	50.4	239
414	A new parameter to define interplanetary coronal mass ejections. <i>Advances in Space Research</i> , 2005 , 35, 2178-2184	2.4	31
413	ON DEFINING INTERPLANETARY CORONAL MASS EJECTIONs FROM FLUID PARAMETERS. <i>Solar Physics</i> , 2005 , 229, 323-344	2.6	24
412	Cassini magnetometer observations during Saturn orbit insertion. <i>Science</i> , 2005 , 307, 1266-70	33.3	196
411	Titan's magnetic field signature during the first Cassini encounter. <i>Science</i> , 2005 , 308, 992-5	33.3	130
410	Morphology of the ring current derived from magnetic field observations. <i>Annales Geophysicae</i> , 2004 , 22, 1267-1295	2	113
409	The Cassini Magnetic Field Investigation. Space Science Reviews, 2004, 114, 331-383	7.5	391
408	Dawn: A journey in space and time. Planetary and Space Science, 2004, 52, 465-489	2	90
407	Io as the trigger of energetic electron disturbances in the inner Jovian magnetosphere. <i>Advances in Space Research</i> , 2004 , 34, 2242-2246	2.4	4
406	Ion injections and magnetic field oscillations near the high-latitude magnetopause associated with solar wind dynamic pressure enhancement. <i>Journal of Geophysical Research</i> , 2004 , 109,		12
405	The Cassini Magnetic Field Investigation 2004 , 331-383		18
404	A sigmafielta fluxgate magnetometer for space applications. <i>Measurement Science and Technology</i> , 2003 , 14, 1003-1012	2	36

(2002-2003)

403	Possible Distortion of the Interplanetary Magnetic Field by the Dust Trail of Comet 122P/de Vico. Astrophysical Journal, 2003 , 597, L61-L64	⊦ ·7	11
402	A Model of the Formation of the Low-Latitude Boundary Layer for Northward IMF by Reconnection: A Summary and Review. <i>Geophysical Monograph Series</i> , 2003 , 121-130	.1	7
401	Polar, Cluster and SuperDARN evidence for high-latitude merging during southward IMF: temporal/spatial evolution. <i>Annales Geophysicae</i> , 2003 , 21, 2233-2258	<u>!</u>	13
400	ICME Identification from Solar Wind Ion Measurements. <i>Solar Physics</i> , 2003 , 216, 285-294	2.6	14
399	Ion cyclotron waves at Io: implications for the temporal variation of Io's atmosphere. <i>Planetary and Space Science</i> , 2003 , 51, 937-944	1	21
398	Ion cyclotron waves in Io's wake region. <i>Planetary and Space Science</i> , 2003 , 51, 233-238	:	11
397	Polar observations of transverse magnetic pulsations initiated at substorm onset in the high-latitude plasma sheet. <i>Journal of Geophysical Research</i> , 2003 , 108,		4
396	Plasma depletion layer: Event studies with a global model. <i>Journal of Geophysical Research</i> , 2003 , 108, SMP 8-1		18
395	Electrodynamics of a substorm-related field line resonance observed by the Polar satellite in comparison with ground Pi2 pulsations. <i>Journal of Geophysical Research</i> , 2003 , 108,		16
394	Characterizing the long-period ULF response to magnetic storms. <i>Journal of Geophysical Research</i> , 2003 , 108,		45
393	Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. <i>Journal of Geophysical Research</i> , 2003 , 108,		34
392	Reply to comment on MeV magnetosheath ions energized at the bow shocklby J. Chen, T. A. Fritz, and R. B. Sheldon. <i>Journal of Geophysical Research</i> , 2003 , 108,		8
391	Possible dipole tilt dependence of dayside magnetopause reconnection. <i>Geophysical Research Letters</i> , 2003 , 30,	ļ.9	33
390	Reply to comment by M. W. Liemohn and A. J. Ridley on Nonlinear response of the polar ionosphere to large values of the interplanetary electric field <i>Journal of Geophysical Research</i> , 2003 , 108,		4
389	Gamma-ray and neutron spectrometer for the Dawn mission to 1 Ceres and 4 Vesta. <i>IEEE Transactions on Nuclear Science</i> , 2003 , 50, 1190-1197	-·7	30
388	On consecutive bursts of low-latitude Pi2 pulsations. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2002 , 64, 1809-1821	2	9
387	The true dimensions of interplanetary coronal mass ejections. <i>Advances in Space Research</i> , 2002 , 29, 301-2	3. p 6	25
386	Long-wavelength mirror modes in multispecies plasmas with arbitrary distributions. <i>Journal of Geophysical Research</i> , 2002 , 107, SSH 1-1-SSH 1-6		13

385	Progress in planetary lightning. Reports on Progress in Physics, 2002, 65, 955-997	14.4	52
384	Relationship between multiple substorm onsets and the IMF: A case study. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 11-1		11
383	Probabilistic models of the Jovian magnetopause and bow shock locations. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 17-1		169
382	Polar-Interball coordinated observations of plasma and magnetic field characteristics in the regions of the northern and southern distant cusps. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 2-1		18
381	Modeling the ring current magnetic field during storms. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 3-1		29
380	Evidence for kinetic Alfvfi waves and parallel electron energization at 4B RE altitudes in the plasma sheet boundary layer. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 24-1-SMP 24-15		229
379	Plasma sheet electromagnetic power generation and its dissipation along auroral field lines. Journal of Geophysical Research, 2002 , 107, SMP 14-1-SMP 14-20		72
378	Correlation of AlfvE wave Poynting flux in the plasma sheet at 4 RE with ionospheric electron energy flux. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 24-1		94
377	Reply to comment by T. Kikuchi and T. Araki on P ropagation of the preliminary reverse impulse of sudden commencements to low latitudes <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 33-1-SMP 33-2		7
376	Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. <i>Journal of Geophysical Research</i> , 2002 , 107, SSH 12-1-SSH 12-10		56
375	Effect of the orientation of interplanetary shock on the geomagnetic sudden commencement. Journal of Geophysical Research, 2002 , 107, SMP 6-1-SMP 6-10		50
374	Flux transfer events in global numerical simulations of the magnetosphere. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 1-1		38
373	Comparison of three magnetopause prediction models under extreme solar wind conditions. Journal of Geophysical Research, 2002 , 107, SMP 3-1		19
372	Fingerprints of collisionless reconnection at the separator, I, Ambipolar-Hall signatures. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 13-1		65
371	Observations of two types of Pc 1½ pulsations in the outer dayside magnetosphere. <i>Journal of Geophysical Research</i> , 2002 , 107, SMP 20-1-SMP 20-20		80
370	Galileo observations of ion cyclotron waves in the Io torus. <i>Advances in Space Research</i> , 2001 , 28, 1469-1	4 74	14
369	A mechanism for the production of a disk-shaped neutral source cloud at Io. <i>Advances in Space Research</i> , 2001 , 28, 1475-1479	2.4	9
368	Depleted magnetic flux tubes as probes of the Io torus plasma. <i>Advances in Space Research</i> , 2001 , 28, 1489-1493	2.4	9

(2001-2001)

367	Ultra-low-frequency waves in the Jovian magnetosphere: causes and consequences. <i>Planetary and Space Science</i> , 2001 , 49, 291-301	2	10
366	The dynamics of planetary magnetospheres. <i>Planetary and Space Science</i> , 2001 , 49, 1005-1030	2	43
365	Mirror modes: Non-Maxwellian distributions. <i>Physics of Plasmas</i> , 2001 , 8, 2934-2945	2.1	15
364	In defense of the term ICME. <i>Eos</i> , 2001 , 82, 434-434	1.5	7
363	Inversion studies of magnetic cloud structure at 0.7 AU: Solar cycle variation. <i>Geophysical Research Letters</i> , 2001 , 28, 891-894	4.9	9
362	Factors controlling the diamagnetic pressure in the polar cusp. <i>Geophysical Research Letters</i> , 2001 , 28, 915-918	4.9	6
361	The Io mass-loading disk: Constraints provided by ion cyclotron wave observations. <i>Journal of Geophysical Research</i> , 2001 , 106, 26233-26242		26
360	The Io mass‐loading disk: Model calculations. <i>Journal of Geophysical Research</i> , 2001 , 106, 26243-26260		28
359	The Io mass-loading disk: Wave dispersion analysis. <i>Journal of Geophysical Research</i> , 2001 , 106, 26261-20	6275	22
358	Magnetometer measurements from the Cassini Earth swing-by. <i>Journal of Geophysical Research</i> , 2001 , 106, 30109-30128		16
357	Nonlinear response of the polar ionosphere to large values of the interplanetary electric field. Journal of Geophysical Research, 2001 , 106, 18495-18504		74
356	MeV magnetosheath ions energized at the bow shock. <i>Journal of Geophysical Research</i> , 2001 , 106, 1910	1-191	1 5 :3
355	Pc1 pearls revisited: Structured electromagnetic ion cyclotron waves on Polar satellite and on ground. <i>Journal of Geophysical Research</i> , 2001 , 106, 29543-29553		51
354	Two distinct substorm onsets. <i>Journal of Geophysical Research</i> , 2001 , 106, 13105-13118		46
353	Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations. <i>Journal of Geophysical Research</i> , 2001 , 106, 19067-19079		44
352	Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. <i>Journal of Geophysical Research</i> , 2001 , 10581-10596		115
351	Evidence for sulfur dioxide, sulfur monoxide, and hydrogen sulfide in the Io exosphere. <i>Journal of Geophysical Research</i> , 2001 , 106, 33267-33272		23
350	The rotation period of Jupiter. <i>Geophysical Research Letters</i> , 2001 , 28, 1911-1912	4.9	21

349	Multiple spacecraft flux rope modeling of the Bastille Day magnetic cloud. <i>Geophysical Research Letters</i> , 2001 , 28, 4417-4420	4.9	26
348	In-flight calibration of the NEAR magnetometer. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2001 , 39, 907-917	8.1	16
347	Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. <i>Journal of Geophysical Research</i> , 2001 , 106, 25467-25488		126
346	Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. <i>Advances in Space Research</i> , 2000 , 26, 1499-1504	2.4	38
345	Ion-cyclotron waves at Io. Advances in Space Research, 2000, 26, 1505-1511	2.4	18
344	The unipolar inductor myth: Mass addition or motional electric field as the source of field-aligned currents at Io. <i>Advances in Space Research</i> , 2000 , 26, 1665-1670	2.4	16
343	Sino-Magnetic Array at Low Latitudes (SMALL) including initial results from the sister sites in the United States. <i>Advances in Space Research</i> , 2000 , 25, 1343-1351	2.4	11
342	The solar wind interaction with the Earth's magnetosphere: a tutorial. <i>IEEE Transactions on Plasma Science</i> , 2000 , 28, 1818-1830	1.3	37
341	Detection of SO in lo's exosphere. <i>Science</i> , 2000 , 287, 1998-9	33.3	44
340	Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. <i>Science</i> , 2000 , 289, 1340-3	33.3	449
340		33.3	449 56
	2000, 289, 1340-3 The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current		
339	2000, 289, 1340-3 The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current System. <i>Geophysical Monograph Series</i> , 2000, 217-226 Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic	1.1	56
339	2000, 289, 1340-3 The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current System. <i>Geophysical Monograph Series</i> , 2000, 217-226 Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground. <i>Geophysical Research Letters</i> , 2000, 27, 2165-2168 Lessons from the ring current injection during the September 24, 25, 1998 storm. <i>Geophysical</i>	1.1 4.9	56
339 338 337	The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current System. <i>Geophysical Monograph Series</i> , 2000, 217-226 Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground. <i>Geophysical Research Letters</i> , 2000, 27, 2165-2168 Lessons from the ring current injection during the September 24, 25, 1998 storm. <i>Geophysical Research Letters</i> , 2000, 27, 1371-1374 Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm	1.1 4.9 4.9	56 12 30
339338337336	The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current System. <i>Geophysical Monograph Series</i> , 2000, 217-226 Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground. <i>Geophysical Research Letters</i> , 2000, 27, 2165-2168 Lessons from the ring current injection during the September 24, 25, 1998 storm. <i>Geophysical Research Letters</i> , 2000, 27, 1371-1374 Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2. <i>Geophysical Research Letters</i> , 2000, 27, 633-636 Observations of centrifugal acceleration during compression of magnetosphere. <i>Geophysical</i>	1.1 4.9 4.9	56 12 30 55
339338337336335	The Effect of the January 10, 1997, Pressure Pulse on the Magnetosphere-Ionosphere Current System. <i>Geophysical Monograph Series</i> , 2000 , 217-226 Magnetosphere on May 11, 1999, the day the solar wind almost disappeared: II. Magnetic pulsations in space and on the ground. <i>Geophysical Research Letters</i> , 2000 , 27, 2165-2168 Lessons from the ring current injection during the September 24, 25, 1998 storm. <i>Geophysical Research Letters</i> , 2000 , 27, 1371-1374 Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2. <i>Geophysical Research Letters</i> , 2000 , 27, 633-636 Observations of centrifugal acceleration during compression of magnetosphere. <i>Geophysical Research Letters</i> , 2000 , 27, 915-918 The magnetosphere on May 11, 1999, the day the solar wind almost disappeared: I. Current	1.1 4.9 4.9 4.9	5612305524

(1998-2000)

331	Response of the equatorial and polar magnetosphere to the very tenuous solar wind on May 11, 1999. <i>Geophysical Research Letters</i> , 2000 , 27, 3773-3776	4.9	17
330	Implications of depleted flux tubes in the Jovian magnetosphere. <i>Geophysical Research Letters</i> , 2000 , 27, 3133-3136	4.9	24
329	How northward turnings of the IMF can lead to substorm expansion onsets. <i>Geophysical Research Letters</i> , 2000 , 27, 3257-3259	4.9	53
328	Observations at the inner edge of the Jovian current sheet: evidence for a dynamic magnetosphere. <i>Planetary and Space Science</i> , 1999 , 47, 521-527	2	15
327	Time series data analyses in space physics. <i>Space Science Reviews</i> , 1999 , 87, 387-463	7.5	66
326	Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. <i>Geophysical Research Letters</i> , 1999 , 26, 425-428	4.9	153
325	The magnetic and plasma structure of flux transfer events. <i>Journal of Geophysical Research</i> , 1999 , 104, 233-245		13
324	Magnetospheric electric fields from ion data. <i>Geophysical Research Letters</i> , 1999 , 26, 1561-1564	4.9	3
323	Sudden compression of the outer magnetosphere associated with an ionospheric mass ejection. <i>Geophysical Research Letters</i> , 1999 , 26, 2343-2346	4.9	32
322	Ionospheric mass ejection in response to a CME. <i>Geophysical Research Letters</i> , 1999 , 26, 2339-2342	4.9	124
321	Generalized Walfi tests through Alfvfi waves and rotational discontinuities using electron flow velocities. <i>Journal of Geophysical Research</i> , 1999 , 104, 19817-19833		34
320	Mirror-mode structures at the Galileo-Io flyby: Instability criterion and dispersion analysis. <i>Journal of Geophysical Research</i> , 1999 , 104, 17479-17489		42
319	Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations. <i>Journal of Geophysical Research</i> , 1999 , 104, 28217-28223		34
318	Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. <i>Nature</i> , 1998 , 395, 777-80	50.4	450
317	Magnetic fluctuations close to Io: ion cyclotron and mirror mode wave properties. <i>Planetary and Space Science</i> , 1998 , 47, 143-150	2	26
316	Observation of isolated structures of the low latitude boundary layer with the INTERBALL/tail probe. <i>Geophysical Research Letters</i> , 1998 , 25, 4305-4308	4.9	10
315	An interpretation of the cross-phase spectrum of geomagnetic pulsations by the field line resonance theory. <i>Geophysical Research Letters</i> , 1998 , 25, 4445-4448	4.9	11
314	High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations. <i>Journal of Geophysical Research</i> , 1998 , 103, 4491-4507		226

313	Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere. Journal of Geophysical Research, 1998, 103, 69-78		118
312	Ion cyclotron waves in the Io torus: Wave dispersion, free energy analysis, and SO2 + source rate estimates. <i>Journal of Geophysical Research</i> , 1998 , 103, 19887-19899		57
311	Ground detection of trans-ionospheric pulse pairs by stations in the National Lightning Detection Network. <i>Geophysical Research Letters</i> , 1998 , 25, 481-484	4.9	10
310	Observations of large amplitude parallel electric field wave packets at the plasma sheet boundary. <i>Geophysical Research Letters</i> , 1998 , 25, 857-860	4.9	27
309	Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. <i>Geophysical Research Letters</i> , 1998 , 25, 2959-2962	4.9	149
308	The cusp/magnetosheath interface on May 29, 1996: Interball-1 and Polar observations. <i>Geophysical Research Letters</i> , 1998 , 25, 2963-2966	4.9	30
307	Reply [to Comment on Interaction of Io with its torus: Does Io have an internal magnetic field? Iby Krishan K. Khurana, Margaret G. Kivelson and Christopher T. Russell Geophysical Research Letters, 1998, 25, 2351-2352	4.9	3
306	Trans-ionospheric pulse pairs (TIPPs): Their occurrence rates and diurnal variation. <i>Geophysical Research Letters</i> , 1998 , 25, 3709-3712	4.9	3
305	POLAR magnetic field observations at apogee during the January 1997 magnetic cloud event. <i>Geophysical Research Letters</i> , 1998 , 25, 2541-2544	4.9	5
304	Field-line resonances triggered by a northward IMF turning. <i>Geophysical Research Letters</i> , 1998 , 25, 299	9142994	1 8
303	Identification of the cloud pulse responsible for a trans-ionospheric pulse pair. <i>Geophysical Research Letters</i> , 1998 , 25, 2645-2648	4.9	4
302	Nature, properties, and origin of low-frequency waves from an oblique shock to the inner magnetosheath. <i>Journal of Geophysical Research</i> , 1998 , 103, 26783-26798		37
301	Magnetopause location under extreme solar wind conditions. <i>Journal of Geophysical Research</i> , 1998 , 103, 17691-17700		717
300	Phase skipping and Poynting flux of continuous pulsations. <i>Journal of Geophysical Research</i> , 1998 , 103, 29479-29491		15
200			
299	Location and shape of the Jovian magnetopause and bow shock. <i>Journal of Geophysical Research</i> , 1998 , 103, 20075-20082		73
298		33.3	7395
	1998 , 103, 20075-20082	33.3	

295	Magnetopause structure and the role of reconnection at the outer planets. <i>Journal of Geophysical Research</i> , 1997 , 102, 24289-24302		62
294	lo's interaction with the Jovian magnetosphere. <i>Eos</i> , 1997 , 78, 93	1.5	10
293	Solar wind-magnetosphere coupling during an isolated substorm event: A multispacecraft ISTP study. <i>Geophysical Research Letters</i> , 1997 , 24, 983-986	4.9	13
292	Ion cyclotron waves observed at Galileo's Io encounter: Implications for neutral cloud distribution and plasma composition. <i>Geophysical Research Letters</i> , 1997 , 24, 2139-2142	4.9	47
291	Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis. <i>Geophysical Research Letters</i> , 1997 , 24, 2143-2146	4.9	63
290	Solar wind polytropic index in the vicinity of stream interactions. <i>Geophysical Research Letters</i> , 1997 , 24, 1431-1434	4.9	39
289	Initial POLAR MFE observation of substorm signatures in the polar magnetosphere. <i>Geophysical Research Letters</i> , 1997 , 24, 1459-1462	4.9	3
288	Comparison of observed and model magnetic fields at high altitudes above the polar cap: POLAR initial results. <i>Geophysical Research Letters</i> , 1997 , 24, 1451-1454	4.9	19
287	The effect of foreshock on the motion of the dayside magnetopause. <i>Geophysical Research Letters</i> , 1997 , 24, 1439-1441	4.9	23
286	The determination of shock ramp width using the noncoplanar magnetic field component. <i>Geophysical Research Letters</i> , 1997 , 24, 1975-1978	4.9	9
285	Interaction of Io with its torus: Does Io have an internal magnetic field?. <i>Geophysical Research Letters</i> , 1997 , 24, 2391-2394	4.9	27
284	A first comparison of POLAR magnetic field measurements and magnetohydrodynamic simulation results for field-aligned currents. <i>Geophysical Research Letters</i> , 1997 , 24, 2491-2494	4.9	27
283	Trans-ionospheric pulse pairs (TIPPs): Their geographic distributions and seasonal variations. <i>Geophysical Research Letters</i> , 1997 , 24, 3165-3168	4.9	12
282	Europa's magnetic signature: report from Galileo's pass on 19 December 1996. <i>Science</i> , 1997 , 276, 1239	- 4 3.3	75
281	Field aligned currents in the high latitude, high altitude magnetosphere: POLAR initial results. <i>Geophysical Research Letters</i> , 1997 , 24, 1455-1458	4.9	11
280	Absence of an internal magnetic field at Callisto. <i>Nature</i> , 1997 , 387, 262-264	50.4	42
279	HYDRODYNAMIC AND MHD EQUATIONS ACROSS THE BOW SHOCK AND ALONG THE SURFACES OF PLANETARY OBSTACLES. <i>Space Science Reviews</i> , 1997 , 79, 757-791	7.5	94
278	Large scale structures in the magnetosheath: Exogenous or endogenous in origin?. <i>Geophysical Research Letters</i> , 1996 , 23, 105-108	4.9	17

277	Comments on Towards an MHD theory for the standoff distance of Earth's bow shock by I. H. Cairns and C. L. Grabbe. <i>Geophysical Research Letters</i> , 1996 , 23, 309-310	4.9	16
276	A statistical study of transient events in the outer dayside magnetosphere. <i>Journal of Geophysical Research</i> , 1996 , 101, 4939-4952		31
275	Multipoint analysis of a bursty bulk flow event on April 11, 1985. <i>Journal of Geophysical Research</i> , 1996 , 101, 4967-4989		170
274	The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1996 , 23, 773-776	4.9	16
273	Observations of a very thin collisionless shock. <i>Geophysical Research Letters</i> , 1996 , 23, 781-784	4.9	46
272	Plasma waves and field-aligned currents in the Venus plasma mantle. <i>Journal of Geophysical Research</i> , 1996 , 101, 17313-17324		23
271	ISEE observations of low-latitude boundary layer for northward interplanetary magnetic field: Implications for cusp reconnection. <i>Journal of Geophysical Research</i> , 1996 , 101, 27239-27249		72
270	Survey of flux transfer events observed with the ISEE 1 spacecraft: Rotational polarity and the source region. <i>Journal of Geophysical Research</i> , 1996 , 101, 27299-27308		43
269	Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. <i>Journal of Geophysical Research</i> , 1996 , 101, 10817-10826		251
268	Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle. <i>Journal of Geophysical Research</i> , 1996 , 101, 137-152		204
267	Io's Interaction with the Plasma Torus: Galileo Magnetometer Report. <i>Science</i> , 1996 , 274, 396-398	33.3	154
266	Large Scale Dynamics of the Magnetospheric Tail Induced by Substorms: A Multisatellite Study. <i>Journal of Geomagnetism and Geoelectricity</i> , 1996 , 48, 675-686		6
265	Accurate determination of magnetic field gradients from four point vector measurements. I. Use of natural constraints on vector data obtained from a single spinning spacecraft. <i>IEEE Transactions on Magnetics</i> , 1996 , 32, 377-385	2	31
264	The occurrence rate of flux transfer events. <i>Advances in Space Research</i> , 1996 , 18, 197-205	2.4	28
263	Discovery of Ganymede's magnetic field by the Galileo spacecraft. <i>Nature</i> , 1996 , 384, 537-541	50.4	310
262	Density and magnetic field fluctuations observed by ISEE 1-2 in the quiet magnetosheath. <i>Annales Geophysicae</i> , 1995 , 13, 343-357	2	28
261	The GGS/POLAR magnetic fields investigation. <i>Space Science Reviews</i> , 1995 , 71, 563-582	7·5	202
260	Ultra low frequency waves at the Earth's bow shock. <i>Advances in Space Research</i> , 1995 , 15, 285-296	2.4	22

259	Comparison of properties of upstream whistlers at different planets. <i>Advances in Space Research</i> , 1995 , 16, 137-141	2.4	16
258	A study of flux transfer events at different planets. <i>Advances in Space Research</i> , 1995 , 16, 159-163	2.4	5
257	An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause. <i>Journal of Geophysical Research</i> , 1995 , 100, 9559		32
256	The 22-year variation of geomagnetic activity: Implications for the polar magnetic field of the Sun. <i>Geophysical Research Letters</i> , 1995 , 22, 3287-3288	4.9	20
255	Damping and spectral formation of upstream whistlers. <i>Journal of Geophysical Research</i> , 1995 , 100, 171	17	33
254	Sudden impulses at subauroral latitudes: Response for northward interplanetary magnetic field. Journal of Geophysical Research, 1995 , 100, 23695		41
253	Structure of the Venus Tail. <i>Geophysical Monograph Series</i> , 1994 , 207-220	1.1	2
252	Magnetospheric and Solar Wind Studies with Co-orbiting Spacecraft. <i>Geophysical Monograph Series</i> , 1994 , 85-100	1.1	2
251	Statistical characteristics of bursty bulk flow events. <i>Journal of Geophysical Research</i> , 1994 , 99, 21257		547
250	On the sources of interplanetary shocks at 0.72 AU. <i>Journal of Geophysical Research</i> , 1994 , 99, 11		73
249	Identification of low-frequency fluctuations in the terrestrial magnetosheath. <i>Journal of Geophysical Research</i> , 1994 , 99, 6011		85
248	Modelling the low-latitude boundary layer with reconnection entry. <i>Geophysical Research Letters</i> , 1994 , 21, 625-628	4.9	17
247	The flaring of the Martian magnetotail observed by the Phobos 2 spacecraft. <i>Geophysical Research Letters</i> , 1994 , 21, 1121-1124	4.9	13
246	The thickness and structure of high beta magnetopause current layer. <i>Geophysical Research Letters</i> , 1994 , 21, 2451-2454	4.9	35
245	Geomagnetic activity and the beta dependence of the dayside reconnection rate. <i>Journal of Geophysical Research</i> , 1994 , 99, 14811		48
244	Determining the standoff distance of the bow shock: Mach number dependence and use of models. Journal of Geophysical Research, 1994 , 99, 17681		201
243	Observation of anomalous slow-mode shock and reconnection layer in the dayside magnetopause. Journal of Geophysical Research, 1994 , 99, 23705		28
242	A multisatellite study of a pseudo-substorm onset in the near-Earth magnetotail. <i>Journal of Geophysical Research</i> , 1993 , 98, 19355-19367		69

241	Effect of sudden solar wind dynamic pressure changes at subauroral latitudes: Time rate of change of magnetic field. <i>Geophysical Research Letters</i> , 1993 , 20, 1-4	4.9	4
240	Effect of sudden solar wind dynamic pressure changes at subauroral latitudes: Change in magnetic field. <i>Journal of Geophysical Research</i> , 1993 , 98, 3983-3990		22
239	SPA dinner, D ubious Distinction wards. <i>Eos</i> , 1993 , 74, 99-100	1.5	11
238	External and internal influences on the size of the dayside terrestrial magnetosphere. <i>Geophysical Research Letters</i> , 1993 , 20, 339-342	4.9	57
237	On the spatial range of validity of the gas dynamic model in the magnetosheath of Venus. <i>Geophysical Research Letters</i> , 1993 , 20, 751-754	4.9	8
236	Flux transfer events: Spontaneous or driven?. <i>Geophysical Research Letters</i> , 1993 , 20, 791-794	4.9	50
235	Sudden impulses at low latitudes: Transient response. <i>Geophysical Research Letters</i> , 1993 , 20, 1015-101	84.9	17
234	VLF imaging of the Venus foreshock. <i>Geophysical Research Letters</i> , 1993 , 20, 2801-2804	4.9	16
233	Comment on Missing pressure in the dayside ionosphere of Venus (Geophysical Research Letters, 1993, 20, 2151-2152	4.9	1
232	Coherence lengths of upstream ULF waves: Dual ISEE observations. <i>Geophysical Research Letters</i> , 1993 , 20, 1755-1758	4.9	10
231	The nightside ionosphere of Venus under varying levels of solar Euv flux. <i>Geophysical Research Letters</i> , 1993 , 20, 2727-2730	4.9	3
230	The magnetic state of the lower ionosphere during Pioneer Venus entry phase. <i>Geophysical Research Letters</i> , 1993 , 20, 2723-2726	4.9	4
229	Plasma waves observed at low altitudes in the tenuous Venus nightside ionosphere. <i>Geophysical Research Letters</i> , 1993 , 20, 2767-2770	4.9	10
228	Observation of intense wave bursts at very low altitudes within the Venus nightside ionosphere. <i>Geophysical Research Letters</i> , 1993 , 20, 2771-2774	4.9	14
227	An empirical model of the size and shape of the near-Earth magnetotail. <i>Geophysical Research Letters</i> , 1993 , 20, 2695-2698	4.9	65
226	Evidence for Langmuir oscillations and a low density cavity in the Venus magnetotail. <i>Geophysical Research Letters</i> , 1993 , 20, 2775-2778	4.9	5
225	Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock. <i>Journal of Geophysical Research</i> , 1993 , 98, 15319		61
224	Magnetic structure of the low beta, quasi-perpendicular shock. <i>Journal of Geophysical Research</i> , 1993 , 98, 15285		72

223	Structure of the tail plasma/current sheet at ~11 RE and its changes in the course of a substorm. Journal of Geophysical Research, 1993 , 98, 17345		214
222	Planetary Lightning. Annual Review of Earth and Planetary Sciences, 1993, 21, 43-87	15.3	15
221	Characteristics of ion flow in the quiet state of the inner plasma sheet. <i>Geophysical Research Letters</i> , 1993 , 20, 1711-1714	4.9	153
220	Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. <i>Journal of Geophysical Research</i> , 1992 , 97, 1411		280
219	Observations of a new class of upstream waves with periods near 3 seconds. <i>Journal of Geophysical Research</i> , 1992 , 97, 2917-2925		35
218	Unusually distant bow shock encounters at Venus. <i>Geophysical Research Letters</i> , 1992 , 19, 833-836	4.9	36
217	On the relative intercalibration of solar wind instruments on IMP-8 and ISEE-3. <i>Geophysical Research Letters</i> , 1992 , 19, 961-963	4.9	10
216	Density and field structure of a FTE observed in the magnetosphere. <i>Geophysical Research Letters</i> , 1992 , 19, 965-968	4.9	4
215	The effect of solar wind dynamic pressure changes on low and mid-latitude magnetic records. <i>Geophysical Research Letters</i> , 1992 , 19, 1227-1230	4.9	80
214	ISEE-1 and -2 observations of an isolated diamagnetic event: An earthward-moving plasma bulge or a tail-aligned flux rope?. <i>Geophysical Research Letters</i> , 1992 , 19, 1743-1746	4.9	5
213	Waves in the inner magnetosheath: A case study. <i>Geophysical Research Letters</i> , 1992 , 19, 2191-2194	4.9	50
212	Slow mode transition in the frontside magnetosheath. <i>Journal of Geophysical Research</i> , 1992 , 97, 8295		137
211	Control of VLF burst activity in the nightside ionosphere of Venus by the magnetic field orientation. <i>Journal of Geophysical Research</i> , 1992 , 97, 11673		18
210	Wave phenomena in the upstream region of Saturn. <i>Journal of Geophysical Research</i> , 1992 , 97, 19187		33
209	The Galileo magnetic field investigation. <i>Space Science Reviews</i> , 1992 , 60, 357	7.5	117
208	Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region. <i>Journal of Geophysical Research</i> , 1992 , 97, 3129-3136		163
207	A study of ULF wave foreshock morphology[] ULF foreshock boundary. <i>Planetary and Space Science</i> , 1992 , 40, 1203-1213	2	52
206	A study of ULF wave foreshock morphology I I: spatial variation of ULF waves. <i>Planetary and Space Science</i> , 1992 , 40, 1215-1225	2	50

205	Venus lightning. Space Science Reviews, 1991, 55, 317	7.5	70
204	Asymmetries in the location of the Venus and Mars bow shock. <i>Geophysical Research Letters</i> , 1991 , 18, 127-129	4.9	29
203	Influences of solar wind parameters and geomagnetic activity on the tail lobe magnetic field: A statistical study. <i>Journal of Geophysical Research</i> , 1991 , 96, 5511		51
202	Reply [to Comment on A re-examination of impulsive VLF signals in the night ionosphere of Venus[] <i>Geophysical Research Letters</i> , 1991 , 18, 755-758	4.9	
201	PC 3,4 magnetic pulsations observed simultaneously in the magnetosphere and at multiple ground stations. <i>Geophysical Research Letters</i> , 1991 , 18, 1671-1674	4.9	21
200	Picked-up protons near Mars: Phobos observations. <i>Geophysical Research Letters</i> , 1991 , 18, 1805-1808	4.9	58
199	The thickness of the magnetosheath: Constraints on the polytropic index. <i>Geophysical Research Letters</i> , 1991 , 18, 1821-1824	4.9	142
198	The magnetic barrier at Venus. <i>Journal of Geophysical Research</i> , 1991 , 96, 11145		112
197	He2+ heating at a quasi-parallel shock. <i>Journal of Geophysical Research</i> , 1991 , 96, 9805		10
196	Proxy studies of energy transfer to the magnetosphere. <i>Journal of Geophysical Research</i> , 1991 , 96, 9541		110
195	Venus ionospheric Elouds Drelationship to the magnetosheath field geometry. <i>Journal of Geophysical Research</i> , 1991 , 96, 11133		20
194	Ulf waves upstream of the Venus bow shock: Properties of one-hertz waves. <i>Journal of Geophysical Research</i> , 1991 , 96, 11271		37
193	Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. <i>Journal of Geophysical Research</i> , 1991 , 96, 14097-14106		215
192	Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space. <i>Geophysical Monograph Series</i> , 1990 , 343-364	1.1	404
191	A Bubblelike Coronal Mass Ejection Flux Rope in the Solar Wind. <i>Geophysical Monograph Series</i> , 1990 , 365-371	1.1	36
190	Global Configuration of a Magnetic Cloud. <i>Geophysical Monograph Series</i> , 1990 , 373-377	1.1	106
			·
189	Radioemission source disputed. <i>Nature</i> , 1990 , 345, 214-214	50.4	

(1990-1990)

187	Interplanetary magnetic field enhancements: Evidence for solar wind dust trail interactions. <i>Advances in Space Research</i> , 1990 , 10, 159-162	2.4	7	
186	Evidence for lightning on Venus. <i>Advances in Space Research</i> , 1990 , 10, 125-136	2.4	14	
185	The Magnetopause. <i>Geophysical Monograph Series</i> , 1990 , 439-453	1.1	15	
184	Observations of Flux Transfer Events: Are Ftes Flux Ropes, Islands, or Surface Waves?. <i>Geophysical Monograph Series</i> , 1990 , 455-471	1.1	44	
183	Reply [to Comment on THe universal time variatlon of magnetic activity [In Geophysical Research Letters, 1990, 17, 309-310]	4.9	3	
182	Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophysical Research Letters, 1990 , 17, 583-586	4.9	226	
181	Particle acceleration during substorm growth and onset. <i>Geophysical Research Letters</i> , 1990 , 17, 587-59	0 4.9	23	
180	The magnetotail of Mars: Phobos observations. <i>Geophysical Research Letters</i> , 1990 , 17, 885-888	4.9	96	
179	Upstream waves at Mars: Phobos observations. <i>Geophysical Research Letters</i> , 1990 , 17, 897-900	4.9	111	
178	Observations of the magnetic fluctuation enhancement in the Earth's foreshock region. <i>Geophysical Research Letters</i> , 1990 , 17, 905-908	4.9	15	
177	Geomagnetic activity for northward interplanetary magnetic fields: AM index response. <i>Geophysical Research Letters</i> , 1990 , 17, 1065-1068	4.9	3	
176	Electron plasma oscillations in the Venus foreshock. <i>Geophysical Research Letters</i> , 1990 , 17, 1805-1808	4.9	25	
175	The electron edge of low latitude boundary layer during accelerated flow events. <i>Geophysical Research Letters</i> , 1990 , 17, 1833-1836	4.9	155	
174	Observations of the density profile in the magnetosheath near the stagnation streamline. <i>Geophysical Research Letters</i> , 1990 , 17, 2035-2038	4.9	82	
173	Cold ion beams in the low latitude boundary layer during accelerated flow events. <i>Geophysical Research Letters</i> , 1990 , 17, 2245-2248	4.9	91	
172	Magnetic pulsations at the quasi-parallel shock. <i>Journal of Geophysical Research</i> , 1990 , 95, 957		72	
171	Structure and properties of the subsolar magnetopause for northward IMF: ISEE observations. <i>Journal of Geophysical Research</i> , 1990 , 95, 6375		112	
170	Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection. <i>Journal of Geophysical Research</i> , 1990 , 95, 8073		205	

169	A study of the coherence length of ULF waves in the Earth's foreshock. <i>Journal of Geophysical Research</i> , 1990 , 95, 10703		29
168	The solar cycle dependence of the location and shape of the Venus bow shock. <i>Journal of Geophysical Research</i> , 1990 , 95, 14961		65
167	Magnetic Flux Ropes in the Ionosphere of Venus. <i>Geophysical Monograph Series</i> , 1990 , 413-423	1.1	19
166	Magnetic fields near Mars: first results. <i>Nature</i> , 1989 , 341, 604-607	50.4	230
165	Small scale irregularities in comet Halley's plasma mantle: An attempt at self-consistent analysis of plasma and magnetic field data. <i>Geophysical Research Letters</i> , 1989 , 16, 5-8	4.9	12
164	Observation of mirror waves downstream of a quasi-perpendicular shock. <i>Geophysical Research Letters</i> , 1989 , 16, 159-162	4.9	54
163	The universal time variation of geomagnetic activity. <i>Geophysical Research Letters</i> , 1989 , 16, 555-558	4.9	19
162	VLF bursts in the night ionosphere of Venus: Estimates of the Poynting flux. <i>Geophysical Research Letters</i> , 1989 , 16, 579-582	4.9	24
161	Comment on D n the response of ionospheric magnetisation to solar wind dynamic pressure from the Pioneer Venus measurements by J. Kar and K. K. Mahajan <i>Geophysical Research Letters</i> , 1989 , 16, 771-772	4.9	3
160	ULF waves in the Mercury magnetosphere. <i>Geophysical Research Letters</i> , 1989 , 16, 1253-1256	4.9	67
159	A re-examination of impulsive VLF signals in the night ionosphere of Venus. <i>Geophysical Research Letters</i> , 1989 , 16, 1481-1484	4.9	15
158	The Uranian magnetopause: Lessons from Earth. <i>Geophysical Research Letters</i> , 1989 , 16, 1485-1488	4.9	25
157	On the source of diffuse, suprathermal ions observed in the vicinity of the Earth's bow shock. Journal of Geophysical Research, 1989 , 94, 3555		35
156	Suprathermal electrons at Earth's bow shock. <i>Journal of Geophysical Research</i> , 1989 , 94, 10011-10025		83
155	Ion reflection and downstream thermalization at the quasi-parallel bow shock. <i>Journal of Geophysical Research</i> , 1989 , 94, 10027-10037		71
154	SPR executive committee meeting report. <i>Eos</i> , 1989 , 70, 675	1.5	
153	Physics of magnetic flux ropes. <i>Eos</i> , 1989 , 70, 684	1.5	3
152	Planetographic clustering of low-altitude impulsive electric signals in the night ionosphere of Venus. <i>Nature</i> , 1988 , 331, 591-594	50.4	22

151	Geomagnetic activity during the passage of the Earth through Halley's tail in 1910. <i>Nature</i> , 1988 , 333, 338-340	50.4	3	
150	Multipoint measurements of upstream waves. <i>Advances in Space Research</i> , 1988 , 8, 147-156	2.4	20	
149	VLF bursts in the night ionosphere of Venus: Effects of the magnetic field. <i>Planetary and Space Science</i> , 1988 , 36, 1211-1218	2	17	
148	SOHO: An unfortunate omission. <i>Eos</i> , 1988 , 69, 636	1.5	1	
147	Solar and interplanetary control of the location of the Venus bow shock. <i>Journal of Geophysical Research</i> , 1988 , 93, 5461		98	
146	The altitude distribution of impulsive signals in the night ionosphere of Venus. <i>Journal of Geophysical Research</i> , 1988 , 93, 5915		30	
145	Field-aligned current signatures in the near-tail region: 1. ISEE observations in the plasma sheet boundary layer. <i>Journal of Geophysical Research</i> , 1988 , 93, 9709		77	
144	On the origin of hot diamagnetic cavities near the Earth's bow shock. <i>Journal of Geophysical Research</i> , 1988 , 93, 11311		89	
143	Reply [to Comment on II u Que?[by Emile A. Okal]. <i>Eos</i> , 1987 , 68, 37	1.5		
142	Robert E. Holzer in celebration of his 80th birthday. <i>Eos</i> , 1987 , 68, 761	1.5	1	
141	Interplanetary magnetic field enhancements: Further evidence for an association with Asteroid 2201 Oljato. <i>Geophysical Research Letters</i> , 1987 , 14, 491-494	4.9	13	
140	Reply to Taylor and Cloutier. <i>Geophysical Research Letters</i> , 1987 , 14, 571-572	4.9	4	
139	Magnetic field draping in the comet Halley coma: Comparison of Vega observations with computer simulations. <i>Geophysical Research Letters</i> , 1987 , 14, 640-643	4.9	21	
138	Mirror instability in the magnetosphere of comet Halley. <i>Geophysical Research Letters</i> , 1987 , 14, 644-64	7 _{4.9}	121	
137	An examination of possible solar wind sources for a sudden brightening of comet IRAS-Araki-Alcock. <i>Geophysical Research Letters</i> , 1987 , 14, 991-994	4.9	7	
136	The ionotail of Venus: Its configuration and evidence for ion escape. <i>Journal of Geophysical Research</i> , 1987 , 92, 15		124	
135	Upper limit on the intrinsic magnetic field of Venus. Journal of Geophysical Research, 1987, 92, 2253		49	
134	Fast shocks at the edges of hot diamagnetic cavities upstream from the Earth's bow shock. <i>Journal of Geophysical Research</i> , 1987 , 92, 3187		40	

133	An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere. <i>Journal of Geophysical Research</i> , 1987 , 92, 7394		240
132	Characteristics of the Marslike limit of the Venus-solar wind interaction. <i>Journal of Geophysical Research</i> , 1987 , 92, 8545		116
131	Magnetic field observations in comet Halley's coma. <i>Nature</i> , 1986 , 321, 288-289	50.4	140
130	The phase relationship between gyrophase-bunched ions and MHD-like waves. <i>Geophysical Research Letters</i> , 1986 , 13, 60-63	4.9	29
129	ISEE-1 and 2 observations of magnetic flux ropes in the magnetotail: FTE's in the plasma sheet?. <i>Geophysical Research Letters</i> , 1986 , 13, 648-651	4.9	83
128	Interplanetary field control of the location of the Venus bow shock: Evidence for comet-like ion pickup. <i>Geophysical Research Letters</i> , 1986 , 13, 917-920	4.9	37
127	Further evidence for lightning on Venus. <i>Geophysical Research Letters</i> , 1986 , 13, 1051-1054	4.9	35
126	Reply [Comment on the Pioneer Venus Orbiter Event of February 11, 1982: of cometary or solar origin? [I Geophysical Research Letters, 1986, 13, 1071-1074	4.9	1
125	Near-tail reconnection as the cause of cometary tail disconnections. <i>Journal of Geophysical Research</i> , 1986 , 91, 1417		53
124	Hot, diamagnetic cavities upstream from the Earth's bow shock. <i>Journal of Geophysical Research</i> , 1986 , 91, 2961		149
123	The average magnetic field draping and consistent plasma properties of the Venus magnetotail. Journal of Geophysical Research, 1986 , 91, 7939		119
122	The resolved layer of a collisionless, high []supercritical, quasi-perpendicular shock wave: 1. Rankine-Hugoniot geometry, currents, and stationarity. <i>Journal of Geophysical Research</i> , 1986 , 91, 110	19	139
121	A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks. <i>Journal of Geophysical Research</i> , 1986 , 91, 11917		98
120	Planetary Bow Shocks. <i>Geophysical Monograph Series</i> , 1985 , 109-130	1.1	59
119	On the source region of flux transfer events. Advances in Space Research, 1985, 5, 363-368	2.4	47
118	Dependence of Venus ionopause altitude and ionospheric magnetic field on solar wind dynamic pressure. <i>Advances in Space Research</i> , 1985 , 5, 173-176	2.4	43
117	Interplanetary magnetic field enhancements in the solar wind: Statistical properties at 1 AU. <i>Icarus</i> , 1985 , 62, 230-243	3.8	17
116	Patchy Reconnection and Magnetic Ropes in Astrophysical Plasmas. <i>Symposium - International Astronomical Union</i> , 1985 , 107, 25-42		

115	The Fluxgate Magnetometer for the AMPTE UK Subsatellite. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 1985 , GE-23, 301-304	8.1	45
114	Solar-terrestrial relations. <i>Eos</i> , 1985 , 66, 57	1.5	2
113	Three spacecraft measurements of an unusual disturbance in the solar wind: Further evidence for a cometary encounter. <i>Geophysical Research Letters</i> , 1985 , 12, 476-478	4.9	14
112	ISEE 1 and 2 observation of the spatial structure of a compressional Pc5 wave. <i>Geophysical Research Letters</i> , 1985 , 12, 613-616	4.9	23
111	The location of the subsolar bow shock of Venus: Implications for the obstacle shape. <i>Geophysical Research Letters</i> , 1985 , 12, 627-630	4.9	14
110	Observations of field-aligned currents at the plasma sheet boundary: An ISEE-1 and 2 survey. <i>Geophysical Research Letters</i> , 1985 , 12, 631-634	4.9	48
109	The Pioneer Venus Orbiter event of February 11, 1982: Of cometary or solar origin?. <i>Geophysical Research Letters</i> , 1985 , 12, 859-861	4.9	3
108	Flux transfer events at the Jovian magnetopause. <i>Journal of Geophysical Research</i> , 1985 , 90, 7397-7404		65
107	Flux transfer events at Mercury. Journal of Geophysical Research, 1985, 90, 11067		60
106	Reconnection at the Earth's Magnetopause: Magnetic Field Observations and Flux Transfer Events. <i>Geophysical Monograph Series</i> , 1984 , 124-138	1.1	25
105	A Dual-Satellite Study of the Spatial Properties Of Ftes. <i>Geophysical Monograph Series</i> , 1984 , 145-152	1.1	20
104	Flux Transfer Events and Interplanetary Magnetic Field Conditions. <i>Geophysical Monograph Series</i> , 1984 , 154-155	1.1	
103	Recent Investigations Op Flux Transfer Events Observed at the Dayside Magnetopause. <i>Geophysical Monograph Series</i> , 1984 , 139-144	1.1	10
102	Patterns of Magnetic Field Merging Sites on the Magnetopause. <i>Geophysical Monograph Series</i> , 1984 , 156-157	1.1	1
101	Interplanetary magnetic field enhancements and their association with the asteroid 2201 oljato. <i>Science</i> , 1984 , 226, 43-5	33.3	53
100	Interplanetary field enhancements in the solar wind: Statistical properties at 0.72 AU. <i>Icarus</i> , 1984 , 60, 332-350	3.8	27
99	Flux transfer events: Scale size and interior structure. <i>Geophysical Research Letters</i> , 1984 , 11, 131-134	4.9	214
98	Time scales for the decay of induced large-scale magnetic fields in the Venus ionosphere. <i>Journal of Geophysical Research</i> , 1984 , 89, 362-368		67

97	A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. <i>Journal of Geophysical Research</i> , 1984 , 89, 786		327
96	Patterns of potential magnetic field merging sites on the dayside magnetopause. <i>Journal of Geophysical Research</i> , 1984 , 89, 1739		191
95	The distribution of reconnection geometry in flux transfer events using energetic ion, plasma and magnetic data. <i>Journal of Geophysical Research</i> , 1984 , 89, 3843		102
94	Flux transfer events on the magnetopause: Spatial distribution and controlling factors. <i>Journal of Geophysical Research</i> , 1984 , 89, 6689		232
93	A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses. Journal of Geophysical Research, 1984 , 89, 6824		43
92	Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere. <i>Journal of Geophysical Research</i> , 1984 , 89, 10676		66
91	Cosmic Electrodynamics. <i>Eos</i> , 1983 , 64, 99	1.5	
90	The interaction of flowing plasmas with planetary ionospheres: A Titan-Venus comparison. <i>Journal of Geophysical Research</i> , 1983 , 88, 49		31
89	Magnetic flux ropes in the Venus ionosphere: Observations and models. <i>Journal of Geophysical Research</i> , 1983 , 88, 58		97
88	Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and 2 Observations. <i>Journal of Geophysical Research</i> , 1983 , 88, 2021		205
87	Global characteristics of magnetic flux ropes in the Venus ionosphere. <i>Journal of Geophysical Research</i> , 1983 , 88, 2993		36
86	Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals. <i>Journal of Geophysical Research</i> , 1983 , 88, 4739		159
85	Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non-specularly reflected-gyrating ions. <i>Journal of Geophysical Research</i> , 1983 , 88, 6121		287
84	Multiple spacecraft observations of interplanetary shocks: ISEE three-dimensional plasma measurements. <i>Journal of Geophysical Research</i> , 1983 , 88, 9941		61
83	An unusual interplanetary event: encounter with a comet?. <i>Nature</i> , 1983 , 305, 612-615	50.4	31
82	Electron Heating Within the Earth's Bow Shock. <i>Physical Review Letters</i> , 1982 , 49, 199-201	7.4	104
81	Introduction to Communication Science and Systems. <i>Eos</i> , 1982 , 63, 548	1.5	
80	Magnetic field and plasma wave observations in a plasma cloud at Venus. <i>Geophysical Research Letters</i> , 1982 , 9, 45-48	4.9	55

79	Large-amplitude magnetic variations in quasi-parallel shocks: Correlation lengths measured by ISEE 1 and 2. <i>Geophysical Research Letters</i> , 1982 , 9, 781-784	4.9	37
78	ISEE-1 and -2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks. <i>Geophysical Research Letters</i> , 1982 , 9, 1037-1040	4.9	69
77	ISEE-1 and -2 observations of laminar bow shocks: Velocity and thickness. <i>Geophysical Research Letters</i> , 1982 , 9, 1171-1174	4.9	80
76	Characteristics of the ULF waves associated with upstream ion beams. <i>Journal of Geophysical Research</i> , 1982 , 87, 643		89
75	The thickness of the magnetopause current layer: ISEE 1 and 2 observations. <i>Journal of Geophysical Research</i> , 1982 , 87, 2108		229
74	Evidence for quasi-stationary reconnection at the dayside magnetopause. <i>Journal of Geophysical Research</i> , 1982 , 87, 2147		127
73	Plasma and magnetic field characteristics of magnetic flux transfer events. <i>Journal of Geophysical Research</i> , 1982 , 87, 2159		320
72	Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. <i>Journal of Geophysical Research</i> , 1982 , 87, 2224		118
71	Standing hydromagnetic waves observed by ISEE 1 and 2: Radial extent and harmonic. <i>Journal of Geophysical Research</i> , 1982 , 87, 3519		126
70	Magnetic field rotation through the magnetopause: ISEE 1 and 2 observations. <i>Journal of Geophysical Research</i> , 1982 , 87, 8139		99
69	The properties of the low altitude magnetic belt in the Venus ionosphere. <i>Advances in Space Research</i> , 1982 , 2, 13-16	2.4	31
68	Effects of large-scale magnetic fields in the Venus ionosphere. Advances in Space Research, 1982, 2, 17-	-2 1 .4	9
67	Particle acceleration at planetary bow shock waves. <i>Nature</i> , 1982 , 295, 41-42	50.4	73
66	The solar wind interaction. <i>Nature</i> , 1982 , 296, 20-20	50.4	4
65	Overshoots in planetary bow shocks. <i>Nature</i> , 1982 , 296, 45-48	50.4	88
64	Orientation of planetary O+ fluxes and magnetic field lines in the Venus wake. <i>Nature</i> , 1982 , 299, 325-	32560.4	9
63	Observations of reverse polarity flux transfer events at the Earth's dayside magnetopause. <i>Nature</i> , 1982 , 300, 23-26	50.4	68
62	Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery. <i>Geophysical Research Letters</i> , 1981 , 8, 261-264	4.9	111

61	Field-aligned currents in the Earth's magnetotail. <i>Journal of Geophysical Research</i> , 1981 , 86, 687		97
60	Particle signature of magnetic flux transfer events at the magnetopause. <i>Journal of Geophysical Research</i> , 1981 , 86, 1628		73
59	Structure of the low-latitude boundary layer. Journal of Geophysical Research, 1981, 86, 2099		338
58	Substorm-related plasma sheet motions as determined from differential timing of plasma changes at the Isee satellites. <i>Journal of Geophysical Research</i> , 1981 , 86, 3459		33
57	Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations. <i>Journal of Geophysical Research</i> , 1981 , 86, 4471-4492		394
56	Whistler mode wave propagation in the solar wind near the bow shock. <i>Journal of Geophysical Research</i> , 1981 , 86, 4511-4516		28
55	Evidence for magnetic field reconnection at the Earth's magnetopause. <i>Journal of Geophysical Research</i> , 1981 , 86, 10049		591
54	The Venus ionopause current sheet: Thickness length scale and controlling factors. <i>Journal of Geophysical Research</i> , 1981 , 86, 11430		51
53	Contour maps of lunar remanent magnetic fields. <i>Journal of Geophysical Research</i> , 1981 , 86, 1055-1069		45
52	On the nature of ULF waves upstream of planetary bow shocks. <i>Advances in Space Research</i> , 1981 , 1, 327-332	2.4	28
51	Magnetic flux ropes in the Venus ionosphere: In situ observations of force-free structures?. <i>Advances in Space Research</i> , 1981 , 1, 53-58	2.4	6
50	Magnetospheric substormsdefinition and signatures. <i>Journal of Geophysical Research</i> , 1980 , 85, 1663		317
49	Whistler mode wave packets in the Earth's foreshock region. <i>Nature</i> , 1980 , 287, 417-420	50.4	34
48	Cui Honorem Honorem. <i>Eos</i> , 1980 , 61, 481	1.5	
47	The location of the dayside ionopause of Venus: Pioneer Venus Orbiter Magnetometer observations. <i>Geophysical Research Letters</i> , 1980 , 7, 561-564	4.9	28
46	Observations of large scale steady magnetic fields in the dayside Venus ionosphere. <i>Geophysical Research Letters</i> , 1980 , 7, 917-920	4.9	91
45	A macroscopic profile of the typical quasi-perpendicular bow shock: Isee 1 and 2. <i>Journal of Geophysical Research</i> , 1980 , 85, 2124		48
44	Observations of the dayside ionopause and ionosphere of Venus. <i>Journal of Geophysical Research</i> , 1980 , 85, 7679		155

43	ng on Venus: Orbiter detection of whistler signals. <i>Journal of Geophysical Research</i> , 1980 , 85, 8158		85
42	Pioneer Venus Orbiter Fluxgate Magnetometer. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 1980 , GE-18, 32-35	8.1	107
41	Comparison of ISEE-1 and -3 interplanetary magnetic field observations. <i>Geophysical Research Letters</i> , 1980 , 7, 381-384	4.9	74
40	Initial ISEE magnetometer results: Shock observation. <i>Space Science Reviews</i> , 1979 , 23, 3	7.5	85
39	Evidence for lightning on Venus. <i>Nature</i> , 1979 , 279, 614-616	50.4	78
38	Observation of magnetic flux ropes in the Venus ionosphere. <i>Nature</i> , 1979 , 279, 616-618	50.4	154
37	Scaling law test and two predictions of planetary magnetic moments. <i>Nature</i> , 1979 , 281, 552-553	50.4	16
36	Pioneer magnetometer observations of the Venus bow shock. <i>Nature</i> , 1979 , 282, 815-816	50.4	22
35	Plasma acceleration at the Earth's magnetopause: evidence for reconnection. <i>Nature</i> , 1979 , 282, 243-24	46 0.4	543
34	AGU member self-evaluation test. <i>Eos</i> , 1979 , 60, 1022	1.5	
33	AGU member self-evaluation test. <i>Eos</i> , 1979 , 60, 1022 ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36	1.5	562
	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research</i>		562 154
33	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36 Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. <i>Journal of</i>		
33	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36 Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. <i>Journal of Geophysical Research</i> , 1979 , 84, 7043	4.9	154
33 32 31	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36 Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. <i>Journal of Geophysical Research</i> , 1979 , 84, 7043 Initial pioneer venus magnetic field results: dayside observations. <i>Science</i> , 1979 , 203, 745-8	4.9	154
33 32 31 30	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36 Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. <i>Journal of Geophysical Research</i> , 1979 , 84, 7043 Initial pioneer venus magnetic field results: dayside observations. <i>Science</i> , 1979 , 203, 745-8 Absorption of whistler mode waves in the ionosphere of venus. <i>Science</i> , 1979 , 205, 112-4	4·9 33·3 33·3	154 139 56 890
33 32 31 30 29	ISEE observations of flux transfer events at the dayside magnetopause. <i>Geophysical Research Letters</i> , 1979 , 6, 33-36 Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. <i>Journal of Geophysical Research</i> , 1979 , 84, 7043 Initial pioneer venus magnetic field results: dayside observations. <i>Science</i> , 1979 , 203, 745-8 Absorption of whistler mode waves in the ionosphere of venus. <i>Science</i> , 1979 , 205, 112-4 Initial ISEE magnetometer results: magnetopause observations. <i>Space Science Reviews</i> , 1978 , 22, 681	4·9 33·3 37·5	154 139 56 890

25	Ogo 5 observations of Pc 5 waves: Particle flux modulations. <i>Journal of Geophysical Research</i> , 1977 , 82, 2774-2786		83
24	On the possibility of deducing interplanetary and solar parameters from geomagnetic records. <i>Solar Physics</i> , 1975 , 42, 259-269	2.6	61
23	The third solar wind conference: A summary. Space Science Reviews, 1975, 17, 435-447	7.5	
22	Structure of the quasi-perpendicular laminar bow shock. <i>Journal of Geophysical Research</i> , 1975 , 80, 502	-514	96
21	An empirical relationship between interplanetary conditions and Dst. <i>Journal of Geophysical Research</i> , 1975 , 80, 4204-4214		975
20	On the source of lunar limb compressions. <i>Journal of Geophysical Research</i> , 1975 , 80, 4700-4711		53
19	The terrestrial magnetosphere: a half-wave rectifier of the interplanetary electric field. <i>Science</i> , 1975 , 189, 717-8	33.3	74
18	On the limitations of geomagnetic measures of interplanetary magnetic polarity. <i>Solar Physics</i> , 1974 , 37, 251-256	2.6	27
17	The Solar Wind and Magnetospheric Dynamics. Astrophysics and Space Science Library, 1974, 3-47	0.3	30
16	The magnetotail and substorms. <i>Space Science Reviews</i> , 1973 , 15, 205	7.5	442
15	Semiannual variation of geomagnetic activity. <i>Journal of Geophysical Research</i> , 1973 , 78, 92-108		692
14	Ion cyclotron waves observed in the polar cusp. <i>Journal of Geophysical Research</i> , 1973 , 78, 2917-2925		34
13	Substorms in space: The correlation between ground and satellite observations of the magnetic field. <i>Radio Science</i> , 1973 , 8, 1059-1076	1.4	57
12	Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. <i>Journal of Geophysical Research</i> , 1973 , 78, 3131-3149		947
11	Study of waves in the Earth's bow shock. <i>Journal of Geophysical Research</i> , 1972 , 77, 2264-2273		53
10	Plasma waves in the dayside polar cusp: 1, Magnetospheric observations. <i>Journal of Geophysical Research</i> , 1972 , 77, 2274-2293		75
9	Outer magnetosphere near midnight at quiet and disturbed times. <i>Journal of Geophysical Research</i> , 1972 , 77, 5487-5502		96
8	Fluctuating magnetic fields in the magnetosphere. <i>Space Science Reviews</i> , 1972 , 12, 810-856	7.5	50

LIST OF PUBLICATIONS

7	Satellite measurements of the moon's magnetic field: A preliminary report. <i>The Moon</i> , 1972 , 4, 419-429	33
6	Ogo 5 observations of upstream waves in the interplanetary medium: Discrete wave packets. <i>Journal of Geophysical Research</i> , 1971 , 76, 845-861	143
5	Ogo 5 observations of the polar cusp on November 1, 1968. <i>Journal of Geophysical Research</i> , 1971 , 76, 6743-6764	129
4	OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise. <i>Journal of Geophysical Research</i> , 1970 , 75, 755-768	224
3	Inward motion of the magnetopause before a substorm. <i>Journal of Geophysical Research</i> , 1970 , 75, 7018-7031	272
2	Magnetic emissions in the magnetosheath at frequencies near 100 Hz. <i>Journal of Geophysical Research</i> , 1969 , 74, 3027-3036	70
1	Dawn at Vesta: Paradigms and Paradoxes321-339	8