George S Bova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7965770/publications.pdf

Version: 2024-02-01

60 11,151 37 57
papers citations h-index g-index

63 63 63 14355
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Movember Global Action Plan 1 (GAP1): Unique Prostate Cancer Tissue Microarray Resource. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 715-727.	1.1	O
2	Combined Longitudinal Clinical and Autopsy Phenomic Assessment in Lethal Metastatic Prostate Cancer: Recommendations for Advancing Precision Medicine. European Urology Open Science, 2021, 30, 47-62.	0.2	2
3	Proteomic characterization of primary and metastatic prostate cancer reveals reduced proteinase activity in aggressive tumors. Scientific Reports, 2021, 11, 18936.	1.6	6
4	Subclone Eradication Analysis Identifies Targets for Enhanced Cancer Therapy and Reveals L1 Retrotransposition as a Dynamic Source of Cancer Heterogeneity. Cancer Research, 2021, 81, 4901-4909.	0.4	6
5	Prostate cancer evolution from multilineage primary to single lineage metastases with implications for liquid biopsy. Nature Communications, 2020, 11, 5070.	5.8	44
6	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	9.4	182
7	Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Pathology Research and Practice, 2018, 214, 848-856.	1.0	19
8	Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. British Journal of Cancer, 2018, 119, 347-356.	2.9	63
9	Human metastases under scrutiny. Nature, 2017, 548, 287-288.	13.7	2
10	The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Scientific Reports, 2017, 7, 17978.	1.6	38
11	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	1.5	34
12	Microseminoprotein-Beta Expression in Different Stages of Prostate Cancer. PLoS ONE, 2016, 11, e0150241.	1.1	28
13	Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer. Journal of Physical Education and Sports Management, 2016, 2, a000752.	0.5	24
14	Mutational signatures of ionizing radiation in second malignancies. Nature Communications, 2016, 7, 12605.	5.8	214
15	Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry–academia collaboration. Computer Methods and Programs in Biomedicine, 2016, 126, 160-170.	2.6	5
16	The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520, 353-357.	13.7	1,185
17	Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. ELife, 2014, 3, .	2.8	318
18	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348

#	Article	IF	Citations
19	Loss of PTEN Is Associated with Aggressive Behavior in ERG-Positive Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2333-2344.	1.1	121
20	DNA Methylation Alterations Exhibit Intraindividual Stability and Interindividual Heterogeneity in Prostate Cancer Metastases. Science Translational Medicine, 2013, 5, 169ra10.	5.8	231
21	Genetic markers associated with early cancerâ€specific mortality following prostatectomy. Cancer, 2013, 119, 2405-2412.	2.0	81
22	Somatic Alterations Contributing to Metastasis of a Castration-Resistant Prostate Cancer. Human Mutation, 2013, 34, 1231-1241.	1.1	52
23	Clustering-Based Method for Developing a Genomic Copy Number Alteration Signature for Predicting the Metastatic Potential of Prostate Cancer. Journal of Probability and Statistics, 2012, 2012, 1-19.	0.3	3
24	Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene, 2012, 31, 3939-3948.	2.6	87
25	Detection and Verification of Glycosylation Patterns of Glycoproteins from Clinical Specimens Using Lectin Microarrays and Lectin-Based Immunosorbent Assays. Analytical Chemistry, 2011, 83, 8509-8516.	3.2	71
26	A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer. Epigenetics, 2011, 6, 1248-1256.	1.3	16
27	Intragenic Rearrangement and Altered RNA Splicing of the Androgen Receptor in a Cell-Based Model of Prostate Cancer Progression. Cancer Research, 2011, 71, 2108-2117.	0.4	177
28	BACOM: <i>in silico</i> detection of genomic deletion types and correction of normal cell contamination in copy number data. Bioinformatics, 2011, 27, 1473-1480.	1.8	30
29	Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 2010, 42, 668-675.	9.4	539
30	Ligand-Independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone-Refractory Prostate Cancer. Cancer Research, 2009, 69, 16-22.	0.4	939
31	Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 2009, 15, 559-565.	15.2	596
32	DNA Hypomethylation Arises Later in Prostate Cancer Progression than CpG Island Hypermethylation and Contributes to Metastatic Tumor Heterogeneity. Cancer Research, 2008, 68, 8954-8967.	0.4	255
33	Roles for the Stem Cell–Associated Intermediate Filament Nestin in Prostate Cancer Migration and Metastasis. Cancer Research, 2007, 67, 9199-9206.	0.4	174
34	Optimal Molecular Profiling of Tissue and Tissue Components: Defining the Best Processing and Microdissection Methods for Biomedical Applications. Molecular Biotechnology, 2005, 29, 119-152.	1.3	20
35	Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biology and Therapy, 2005, 4, 548-554.	1.5	132
36	Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Methods in Molecular Medicine, 2005, 103, 15-66.	0.8	4

#	Article	IF	Citations
37	Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 2004, 431, 707-712.	13.7	959
38	Hypermethylation of CpG Islands in Primary and Metastatic Human Prostate Cancer. Cancer Research, 2004, 64, 1975-1986.	0.4	467
39	Xq27-28 deletions in prostate carcinoma. Genes Chromosomes and Cancer, 2003, 37, 381-388.	1.5	14
40	Evaluation of Non-Formalin Tissue Fixation for Molecular Profiling Studies. American Journal of Pathology, 2002, 160, 449-457.	1.9	274
41	Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nature Genetics, 2002, 32, 321-325.	9.4	318
42	Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate, 2001, 47, 102-110.	1.2	137
43	Methylation and mutational analysis of p27kip1 in prostate carcinoma. Prostate, 2001, 48, 248-253.	1.2	35
44	Detection and analysis of ?-catenin mutations in prostate cancer. Prostate, 2000, 45, 323-334.	1.2	167
45	LOSS OF HETEROZYGOSITY AT 12P12–13 IN PRIMARY AND METASTATIC PROSTATE ADENOCARCINOMA. Journal of Urology, 2000, 164, 192-196.	0.2	55
46	Deletion mapping at 12p12-13 in metastatic prostate cancer., 1999, 25, 270-276.		42
47	Evidence for a prostate cancer susceptibility locus on the X chromosome Nature Genetics, 1998, 20, 175-179.	9.4	641
48	BIOLOGICAL AGGRESSIVENESS OF HEREDITARY PROSTATE CANCER: LONG-TERM EVALUATION FOLLOWING RADICAL PROSTATECTOMY. Journal of Urology, 1998, 160, 660-663.	0.2	69
49	VITAMIN D RECEPTOR POLYMORPHISMS AND LETHAL PROSTATE CANCER. Journal of Urology, 1998, 160, 1405-1409.	0.2	56
50	Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes and Cancer, 1997, 19, 90-96.	1.5	169
51	DNA methylation, molecular genetic, and linkage studies in prostate cancer. Prostate, 1996, 29, 36-44.	1.2	29
52	Review of allelic loss and gain in prostate cancer. World Journal of Urology, 1996, 14, 338-46.	1,2	62
53	Molecular genetics and chromosomal alterations in prostate cancer. Cancer, 1995, 75, 2004-2012.	2.0	31
54	Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate, 1995, 26, 35-39.	1.2	123

#	Article	IF	CITATIONS
55	Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genetics, 1995, 11, 210-212.	9.4	593
56	Taql polymorphism of the human MXI1 gene. Human Molecular Genetics, 1994, 3, 2266-2266.	1.4	0
57	Hereditary Prostate Cancer: Epidemiologic and Clinical Features. Journal of Urology, 1993, 150, 797-802.	0.2	519
58	Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Research, 1993, 53, 3869-73.	0.4	283
59	Methods of radical prostatectomy specimen processing: a novel technique for harvesting fresh prostate cancer tissue and review of processing techniques. Modern Pathology, 1993, 6, 201-7.	2.9	53
60	Lethal Metastatic Human Prostate Cancer: Autopsy Studies and Characteristics of Metastases. , 0, , 39-60.		2