Timur O Khaliullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7965591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibrosis biomarkers in workers exposed to MWCNTs. Toxicology and Applied Pharmacology, 2016, 299, 125-131.	2.8	127
2	Graphene Oxide, But Not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation by Dendritic Cells. Small, 2013, 9, 1686-1690.	10.0	75
3	Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE, 2016, 11, e0150628.	2.5	70
4	Carbon Nanotubes Enhance Metastatic Growth of Lung Carcinoma via Upâ€Regulation of Myeloidâ€Đerived Suppressor Cells. Small, 2013, 9, 1691-1695.	10.0	61
5	Oxidative Stress, Inflammatory Biomarkers, and Toxicity in Mouse Lung and Liver after Inhalation Exposure to 100% Biodiesel or Petroleum Diesel Emissions. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 907-921.	2.3	49
6	Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. Journal of Immunotoxicology, 2018, 15, 12-23.	1.7	45
7	In Vitro Toxicity Evaluation of Lignin-(Un)coated Cellulose Based Nanomaterials on Human A549 and THP-1 Cells. Biomacromolecules, 2016, 17, 3464-3473.	5.4	33
8	Carbon nanotubes exposure risk assessment: From toxicology to epidemiologic studies (Overview of) Tj ETQq0 0	0 ₀ gBT /O	verlock 10 T
9	Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-121. Experimental Lung Research, 2017, 43, 311-326.	1.2	19
10	Evaluation of Fibrogenic Potential of Industrial Multi-Walled Carbon Nanotubes in Acute Aspiration Experiment. Bulletin of Experimental Biology and Medicine, 2015, 158, 684-687.	0.8	18
11	Assessment of airborn multiwalled carbon nanotubes in a manufactoring environment. Nanotechnologies in Russia, 2016, 11, 110-116.	0.7	15
12	Assessment of reproductive toxicity of multiwalled carbon nanotubes and their putative effects on population ecology of mouselike rodents. Nanotechnologies in Russia, 2015, 10, 458-467.	0.7	13

13	Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicology and Applied Pharmacology, 2020, 390, 114898.	2.8	12
14	Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicology and Applied Pharmacology, 2019, 362, 67-76.	2.8	10
15	Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. Carbon, 2021, 178, 563-572.	10.3	8
16	Differential responses of murine alveolar macrophages to elongate mineral particles of asbestiform and non-asbestiform varieties: Cytotoxicity, cytokine secretion and transcriptional changes. Toxicology and Applied Pharmacology, 2020, 409, 115302.	2.8	6
17	Dispersion of Single-Walled Carbon Nanotubes in Biocompatible Environments. Nanotechnologies in Russia, 2020, 15, 437-444.	0.7	6
18	Occupational Respiratory Pathology in Russia: Current Trends and Challenges. Current Respiratory Medicine Reviews, 2016, 12, 17-26.	0.2	0