
Vicente D RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7965435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Applied Physics Letters, 2004, 85, 2343-2345.	1.5	103
2	Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters. Optics Express, 2010, 18, 22032.	1.7	98
3	Optical nanoheater based on the Yb^3+-Er^3+ co-doped nanoparticles. Optics Express, 2009, 17, 11794.	1.7	88
4	Novel Sol–Gel Nanoâ€Glass–Ceramics Comprising Ln ³⁺ â€Doped YF ₃ Nanocrystals: Structure and High Efficient UV Upâ€Conversion. Advanced Functional Materials, 2011, 21, 3136-3142.	7.8	82
5	Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host. Optics Express, 2012, 20, 13582.	1.7	74
6	Optical properties and cross relaxation among Sm3+ ions in fluorzincate glasses. Journal of Luminescence, 1992, 54, 231-236.	1.5	73
7	Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2. Journal of Alloys and Compounds, 2017, 721, 405-410.	2.8	69
8	Luminescent properties of transparent nanostructured Eu3+doped SnO2–SiO2glass-ceramics prepared by the sol–gel method. Nanotechnology, 2005, 16, S300-S303.	1.3	66
9	Luminescence and structural characterization of transparent nanostructured Eu3+-doped LaF3–SiO2 glass–ceramics prepared by sol–gel method. Optical Materials, 2007, 29, 999-1003.	1.7	62
10	Laser and gain parameters at 2.7μm of Er3+-doped oxyfluoride transparent glass–ceramics. Optical Materials, 2006, 28, 1143-1146.	1.7	52
11	Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb ³⁺ ions. RSC Advances, 2012, 2, 1496-1501.	1.7	52
12	Infrared tuneable up-conversion phosphor based on Er3+-doped nano-glass–ceramics. Journal of Alloys and Compounds, 2007, 440, 328-332.	2.8	46
13	Increase in the Tb3+ green emission in SiO2–LaF3 nano-glass-ceramics by codoping with Dy3+ ions. Journal of Applied Physics, 2010, 108, .	1.1	43
14	Experiment and theoretical modeling of the luminescence of silver nanoclusters dispersed in oxyfluoride glass. Journal of Chemical Physics, 2012, 136, 174108.	1.2	40
15	Gain cross-sections of transparent oxyfluoride glass–ceramics single-doped with Ho3+ (at 2.0μm) and with Tm3+ (at 1.8μm). Journal of Alloys and Compounds, 2007, 436, 216-220.	2.8	38
16	Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses. Journal of Nanoparticle Research, 2008, 10, 499-506.	0.8	37
17	Infrared, blue and ultraviolet upconversion emissions in Yb3+–Tm3+-doped fluoroindate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 941-945.	2.0	36
18	Yb3+–Er3+ co-doped sol–gel transparent nano-glass-ceramics containing NaYF4 nanocrystals for tuneable up-conversion phosphors. Journal of Alloys and Compounds, 2009, 480, 706-710.	2.8	35

Vicente D RodrÃguez

#	Article	IF	CITATIONS
19	Crystallization and up-conversion luminescence properties of Er3+/Yb3+-doped NaYF4-based nano-glass-ceramics. Journal of the European Ceramic Society, 2015, 35, 1831-1840.	2.8	35
20	Up-conversion in sol–gel derived nano-glass–ceramics comprising NaYF4 nano-crystals doped with Yb3+, Ho3+ and Tm3+. Optical Materials, 2010, 32, 903-908.	1.7	34
21	Sol–gel transparent nano-glass–ceramics containing Eu3+-doped NaYF4 nanocrystals. Journal of Non-Crystalline Solids, 2010, 356, 933-936.	1.5	34
22	Room temperature photon avalanche upconversion in Tm3+-doped fluoroindate glasses. Journal of Physics Condensed Matter, 2000, 12, 1507-1516.	0.7	33
23	Up-conversion and colour tuneability in Yb3+–Er3+–Tm3+ co-doped transparent nano-glass-ceramics. Journal of Alloys and Compounds, 2009, 479, 557-560.	2.8	33
24	Cross-relaxation for Tm3+ ions in indium-based glasses. Journal of Non-Crystalline Solids, 1993, 161, 294-296.	1.5	31
25	Down-shifting by energy transfer in Dy3+–Tb3+ co-doped YF3-based sol–gel nano-glass-ceramics for photovoltaic applications. Optical Materials, 2011, 33, 587-591.	1.7	31
26	Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing. Optical Materials, 2012, 34, 616-621.	1.7	31
27	Down-shifting in Ce3+–Tb3+ co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells. Optical Materials, 2012, 34, 1994-1997.	1.7	30
28	Optical properties of Gd3+ in fluorozirconate glasses. Journal of Luminescence, 1988, 39, 275-282.	1.5	29
29	Visibleâ€toâ€UV/Violet Upconversion Dynamics in Er ³⁺ â€Doped Oxyfluoride Nanoscale Class Ceramics. Advanced Optical Materials, 2013, 1, 747-752.	3.6	28
30	Site-selective spectroscopy in Sm3+-doped sol–gel-derived nano-glass-ceramics containing SnO2quantum dots. Nanotechnology, 2008, 19, 295707.	1.3	26
31	Luminescent properties of Eu3+–Tb3+-doped SiO2–SnO2-based nano-glass–ceramics prepared by sol–gel method. Journal of Alloys and Compounds, 2009, 473, 571-575.	2.8	26
32	Cathodo- and photoluminescence in Yb^3+-Er^3+ co-doped PbF_2 nanoparticles. Optics Express, 2010, 18, 8836.	1.7	26
33	The size and structure of Ag particles responsible for surface plasmon effects and luminescence in Ag homogeneously doped bulk glass. Journal of Applied Physics, 2013, 114, .	1.1	25
34	Ultraviolet and visible upconversion luminescence in Nd3+-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods. Journal of Applied Physics, 2006, 99, 113510.	1.1	24
35	Optical properties of Ho3+-Yb3+co-doped nanostructured SiO2-LaF3glass-ceramics prepared by sol-gel method. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1762-1768.	0.8	24
36	Measurement of Quantum Yield of Up-Conversion Luminescence in Er ³⁺ -Doped Nano-Glass-Ceramics. Journal of Nanoscience and Nanotechnology, 2009, 9, 2072-2075.	0.9	24

VICENTE D RODRÃGUEZ

#	Article	IF	CITATIONS
37	Colour tuneability and white light generation in Yb3+–Ho3+–Tm3+ co-doped SiO2–LaF3 nano-glass-ceramics prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 51, 4-9.	1.1	24
38	Upconversion dynamics in Er3+-doped fluoroindate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 935-940.	2.0	23
39	Sol–gel preparation and white up-conversion luminescence in rare-earth doped PbF2 nanocrystals dissolved in silica glass. Journal of Sol-Gel Science and Technology, 2010, 53, 509-514.	1.1	23
40	Optical properties and upconversion in Yb3+—Tm3+co-doped oxyfluoride glasses and glass ceramics. Molecular Physics, 2003, 101, 1057-1065.	0.8	21
41	Structure and up-conversion luminescence in sol–gel derived Er3+–Yb3+ co-doped SiO2:PbF2 nano-glass–ceramics. Optical Materials, 2009, 32, 104-107.	1.7	21
42	Transfer and back transfer processes in Yb3+–Er3+ codoped fluoroindate glasses. Journal of Applied Physics, 1999, 86, 935-939.	1.1	20
43	Energy transfer between Eu3+ions in calcium diborate glasses. Journal of Physics Condensed Matter, 1999, 11, 8739-8747.	0.7	19
44	Preparation and optical spectroscopy of Eu3+-doped GaN luminescent semiconductor from freeze-dried precursors. Journal of Solid State Chemistry, 2004, 177, 4213-4220.	1.4	19
45	Spectroscopic characterization and up-conversion in sol–gel derived Yb3+–Pr3+ co-doped SiO2–LaF3 nano-glass-ceramics. Journal of Non-Crystalline Solids, 2010, 356, 1349-1353.	1.5	19
46	Yb ³⁺ -Er ³⁺ -Tm ³⁺ co-doped nano-glass-ceramics tuneable up-conversion phosphor. EPJ Applied Physics, 2008, 43, 149-153.	0.3	18
47	Photoluminescence of porous silicon stain etched and doped with erbium and ytterbium. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 525-528.	1.3	18
48	White light up-conversion in transparent sol–gel derived glass-ceramics containing Yb3+–Er3+–Tm3+ triply-doped YF3 nanocrystals. Materials Chemistry and Physics, 2010, 124, 699-703.	2.0	18
49	Flat gain cross-section of 1.5 mm amplifier in Er3+-doped oxyfluoride glass-ceramics. Physica Status Solidi A, 2004, 201, R57-R59.	1.7	17
50	Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics. Optical Materials, 2004, 27, 543-547.	1.7	17
51	Colour Tuneability in Sol–Gel Nano-Glass-Ceramics Comprising Yb ³⁺ -Er ³⁺ -Tm ³⁺ Co-Doped NaYF ₄ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2010, 10, 1273-1277.	0.9	17
52	Structural and luminescence study of Ce3+ and Tb3+ doped Ca3Sc2Si3O12 garnets obtained by freeze-drying synthesis method. Optical Materials, 2015, 46, 109-114.	1.7	16
53	Highly luminescent film as enhancer of photovoltaic devices. Journal of Luminescence, 2018, 201, 148-155.	1.5	16
54	Mn ²⁺ luminescence in Mg-Ai spinels. Radiation Effects and Defects in Solids, 1995, 136, 29-32.	0.4	15

Vicente D RodrÃguez

#	Article	IF	CITATIONS
55	Time-resolved fluorescence line narrowing inYb3+-doped fluoroindate glasses. Physical Review B, 1998, 57, 3396-3401.	1.1	15
56	Fano antiresonances of Cr3+ in alkaline disilicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 1319-1322.	2.0	15
57	Upâ€conversion in nanostructured Yb ³⁺ –Tm ³⁺ coâ€doped sol–gel derived SiO ₂ –LaF ₃ transparent glassâ€ceramics. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 330-334.	0.8	15
58	Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering. Journal of Biomedical Optics, 2009, 14, 034026.	1.4	15
59	Understanding the up-conversion dynamics in high efficiency Yb3+–Tm3+ systems for solar cells. Optical Materials, 2011, 34, 179-182.	1.7	15
60	Wide colour gamut generated in triply lanthanide doped sol–gel nano-glass–ceramics. Journal of Nanoparticle Research, 2009, 11, 879-884.	0.8	14
61	Size-dependent luminescence of Sm3+ doped SnO2 nano-particles dispersed in sol-gel silica glass. Applied Physics B: Lasers and Optics, 2010, 101, 849-854.	1.1	14
62	Theory of the kinetics of luminescence and its temperature dependence for Ag nanoclusters dispersed in a glass host. Physical Chemistry Chemical Physics, 2013, 15, 15949.	1.3	14
63	Erbium doped stain etched porous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 171-174.	1.7	12
64	Rare-earth doped YF3 nanocrystals embedded in sol–gel silica glass matrix for white light generation. Journal of Luminescence, 2010, 130, 2508-2511.	1.5	12
65	Synthesis, X-ray structure, polarized optical spectra and DFT theoretical calculations of two new organic–inorganic hybrid fluoromanganates(iii): (bpaH2)[MnF4(H2O)2]2and (bpeH2)[MnF4(H2O)2]2. Dalton Transactions, 2004, , 273-278.	1.6	11
66	Gradual oxidation of stain etched porous silicon nanostructures applied to silicon-based solar cells. Sensors and Actuators A: Physical, 2009, 150, 97-101.	2.0	11
67	Photon down-shifting by energy transfer from Sm3+ to Eu3+ ions in sol-gel SiO2-LaF3 nano-glass-ceramics for photovoltaics. Applied Physics B: Lasers and Optics, 2012, 108, 577-583.	1.1	11
68	Luminescence and structural analysis of Ce ³⁺ and Er ³⁺ doped and Ce ³⁺ –Er ³⁺ codoped Ca ₃ Sc ₂ Si ₃ O ₁₂ garnets: influence of the doping concentration in the energy transfer processes. RSC Advances, 2016, 6, 15054-15061.	1.7	11
69	Luminescence of Nanostructured SnO ₂ -SiO ₂ Glass-Ceramics Prepared Sol–Gel Method. Journal of Nanoscience and Nanotechnology, 2008, 8, 2143-2146.	0.9	10
70	Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter. Journal of Nanoparticle Research, 2011, 13, 7295-7301.	0.8	10
71	Energy transfer and up-conversion in Yb-Tm codoped fluorindate glasses. Radiation Effects and Defects in Solids, 1995, 135, 129-132.	0.4	8
72	Site selective spectroscopy of Eu ³⁺ and Eu ³⁺ -Ho ³⁺ doped glasses. Radiation Effects and Defects in Solids, 1995, 135, 105-108.	0.4	7

Vicente D RodrÃguez

#	Article	IF	CITATIONS
73	In vivo spectroscopy: a novel approach for simultaneously estimating nitric oxide and hemodynamic parameters in the rat brain. Journal of Neuroscience Methods, 2002, 119, 151-161.	1.3	7
74	Optical Properties of Rare Earth Doped Transparent Oxyfluoride Glass Ceramics. Radiation Effects and Defects in Solids, 2003, 158, 457-462.	0.4	7
75	Thermoluminescence of low-temperature X-irradiated MgO and MgO:Li single crystals. Physica Status Solidi A, 1983, 75, 577-582.	1.7	6
76	Spectroscopic Monitoring of the Eu 3+ Ion Local Structure in the Pressure Induced Amorphization Of EuZrF 7 Polycrystal. High Pressure Research, 2002, 22, 111-114.	0.4	6
77	Structural and luminescent study in lanthanide doped sol–gel glass–ceramics comprising CeF3 nanocrystals. Journal of Sol-Gel Science and Technology, 2011, 60, 170-176.	1.1	6
78	Sol–gel transparent nanoâ€glassâ€ceramics comprising rareâ€earthâ€doped NaYF ₄ nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2249-2254.	0.8	5
79	Gain cross-section of 1.06î¼m emission in Nd3+-doped SiO2–LaF3 glass–ceramics prepared by sol–gel method. Journal of Non-Crystalline Solids, 2008, 354, 2000-2003.	1.5	4
80	Undoped and Eu3+ Doped In2O3 Quantum-Dots in Transparent Glass-Ceramics. Journal of Nanoscience and Nanotechnology, 2009, 9, 4834-4838.	0.9	4
81	Dual Emission in Multiphase SiO ₂ –SnO ₂ –LaF ₃ Nanostructured Glass-Ceramics for Simultaneous UV and NIR Solar Spectrum Conversion. Science of Advanced Materials. 2015. 7. 2272-2277.	0.1	3
82	Thermoluminescence of X-Irradiated CaO and CaO:Li Single Crystals. Physica Status Solidi A, 1983, 77, 625-631.	1.7	2
83	Mechanism of millisecond lifetime luminescence of Li nanoclusters dispersed in ZnO:Li nanocrystals. Optical Materials, 2013, 35, 638-643.	1.7	1