Oleg N Primachenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7965092/publications.pdf

Version: 2024-02-01

		1040056	1125743
31	198	9	13
papers	citations	h-index	g-index
31	31	31	143
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Orientational uniaxial stretching of proton conducting perfluorinated membranes. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
2	State of the art and prospects in the development of protonâ€conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies, 2021, 32, 1386-1408.	3.2	28
3	Influence of sulfonyl fluoride monomers on the mechanism of emulsion copolymerization with the preparation of proton-conducting membrane precursors. Journal of Fluorine Chemistry, 2021, 244, 109736.	1.7	6
4	Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds. Russian Chemical Bulletin, 2021, 70, 1713-1717.	1.5	9
5	Structure of Diffusion Polymer Membranes for Molecular and Ionic Transport. Journal of Surface Investigation, 2021, 15, 939-946.	0.5	1
6	Composite proton-conducting membranes with nanodiamonds. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 140-146.	2.1	10
7	Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds. Membranes and Membrane Technologies, 2020, 2, 1-9.	1.9	8
8	Neutron studies of the structure and dynamics of molecular and polymer self-assembled systems. Physica Scripta, 2020, 95, 044008.	2.5	5
9	Perfluorosulfonic acid polymer composites: Effect of the support and synthesis method on the acid and catalytic properties. Molecular Catalysis, 2020, 492, 111006.	2.0	1
10	Morphology, Nanostructure, and Processability of Reactor Powders of Ultrahigh-Molecular-Weight Polyethylene Produced on Self-Immobilizing Catalytic Systems. Doklady Chemistry, 2018, 478, 16-19.	0.9	3
11	Relationship between the Morphology, Nanostructure, and Strength Properties of Aquivion® Type Perfluorinated Proton-Conducting Membranes Prepared by Casting from Solution. Russian Journal of Applied Chemistry, 2018, 91, 101-104.	0.5	16
12	The synthesis and study of the physicochemical and catalytic properties of composites with the sulfated perfluoropolymer/carbon nanofiber composition. Kinetics and Catalysis, 2017, 58, 655-662.	1.0	4
13	Structure and property optimization of perfluorinated short side chain membranes for hydrogen fuel cells using orientational stretching. RSC Advances, 2016, 6, 108864-108875.	3.6	12
14	Performance of the hydrogen–air fuel cell with a Russian analogue of the Aquivion solid polymer electrolyte. Doklady Physical Chemistry, 2015, 464, 227-230.	0.9	3
15	Structure characterization of perfluorosulfonic short side chain polymer membranes. RSC Advances, 2015, 5, 73820-73826.	3.6	17
16	Thermodynamic properties of water in perfluorinated membranes of Nafion and Aquivion types, prepared by emulsion polymerization. Russian Journal of Applied Chemistry, 2014, 87, 1314-1318.	0.5	10
17	Polymer hydrogels with the memory effect for immobilization of drugs. Polymer Science - Series B, 2014, 56, 863-870.	0.8	1
18	Polymeric hydrogels with memory effect for immobilization of binary drug combinations. Russian Journal of Applied Chemistry, 2013, 86, 1587-1593.	0.5	1

#	Article	IF	CITATIONS
19	Scientific principles of a new process for manufacturing perfluorinated polymer electrolytes for fuel cells. Petroleum Chemistry, 2012, 52, 453-461.	1.4	15
20	Effect of preparation conditions on nanostructural features of the NAFION® type perfluorinated proton conducting membranes. Petroleum Chemistry, 2012, 52, 565-570.	1.4	8
21	Copolymerization of tetrafluoroethylene with perfluoro(3,6-dioxa-4-methyl-7-octene)sulfonyl fluoride in a water-emulsion medium. Doklady Chemistry, 2011, 437, 66-68.	0.9	6
22	Polymer hydrogels with the memory effect for immobilization of drugs. Polymer Science - Series A, 2011, 53, 323-335.	1.0	9
23	Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization. Crystallography Reports, 2011, 56, 1114-1117.	0.6	2
24	Proton-conducting membranes based on multicomponent copolymers. Russian Journal of Applied Chemistry, 2008, 81, 1213-1219.	0.5	1
25	Styrene-acrylate copolymer plastisols with stable colloidal properties. Polymer Science - Series A, 2007, 49, 1086-1092.	1.0	0
26	Transetherification of melamine–formaldehyde resin methyl ethers and competing reaction of self-condensation. Journal of Applied Polymer Science, 2006, 101, 2977-2985.	2.6	7
27	Submicron Sized Hollow Polymer Particles: Preparation and Properties. Macromolecular Symposia, 2005, 226, 213-226.	0.7	8
28	New Possibilities for Controlling the Morphology of Core-Shell Latex Particles During Emulsion Polymerization. Russian Journal of Applied Chemistry, 2005, 78, 1987-1992.	0.5	2
29	Preparation of cationic latices comprising hollow thermostable particles. Journal of Polymer Science Part A, 2004, 42, 2225-2234.	2.3	2
30	Compound Latexes for Antistatic Coatings. Russian Journal of Applied Chemistry, 2002, 75, 1705-1708.	0.5	0
31	Segregation of Polymers in the Course of Film Formation from a Mixture of Latexes. Russian Journal of Applied Chemistry, 2001, 74, 1173-1177.	0.5	O