Rebecca A Prosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7964537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paternal Cocaine in Mice Alters Social Behavior and Brain Oxytocin Receptor Density in First Generation Offspring. Neuroscience, 2022, 485, 65-77.	1.1	2
2	A microfluidic bubble perfusion device for brain slice culture. Analytical Methods, 2021, 13, 1364-1373.	1.3	4
3	Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices. Protein Science, 2021, , .	3.1	8
4	Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. European Journal of Neuroscience, 2020, 51, 47-70.	1.2	3
5	Estimation of available epinephrine dose in expired and discolored autoinjectors via quantitative smartphone imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 2785-2793.	1.9	1
6	Epigenetic effects of paternal cocaine on reward stimulus behavior and accumbens gene expression in mice. Behavioural Brain Research, 2019, 367, 68-81.	1.2	14
7	Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiology of Sleep and Circadian Rhythms, 2018, 5, 15-36.	1.4	19
8	Paternal Cocaine Disrupts Offspring Circadian Clock Function in a Sex-Dependent Manner in Mice. Neuroscience, 2018, 379, 257-268.	1.1	9
9	The Mammalian Circadian Clock Exhibits Chronic Ethanol Tolerance and Withdrawalâ€Induced Glutamate Hypersensitivity, Accompanied by Changes in Glutamate and TrkB Receptor Proteins. Alcoholism: Clinical and Experimental Research, 2018, 42, 315-328.	1.4	3
10	Regulation of Locomotor activity in fed, fasted, and food-restricted mice lacking tissue-type plasminogen activator. BMC Physiology, 2018, 18, 2.	3.6	11
11	Urokinaseâ€ŧype plasminogen activator modulates mammalian circadian clock phase regulation in tissueâ€ŧype plasminogen activator knockout mice. European Journal of Neuroscience, 2017, 45, 805-815.	1.2	6
12	Proteolytic cleavage of proBDNF into mature BDNF in the basolateral amygdala is necessary for defeat-induced social avoidance. Learning and Memory, 2016, 23, 156-160.	0.5	16
13	Assessing ethanol's actions in the suprachiasmatic circadian clock using inÂvivo and inÂvitro approaches. Alcohol, 2015, 49, 321-339.	0.8	16
14	GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin. Journal of Neuroscience, 2015, 35, 14957-14965.	1.7	37
15	The Mammalian Circadian Clock in the Suprachiasmatic Nucleus Exhibits Rapid Tolerance to Ethanol In Vivo and In Vitro. Alcoholism: Clinical and Experimental Research, 2014, 38, 760-769.	1.4	12
16	LRP-1 modulates glutamate-induced phase shifting in the mouse SCN circadian clock. , 2014, , .		1
17	The mammalian circadian clock exhibits chronic tolerance to alcohol in vitro. , 2014, , .		0
18	Cocaine modulates mammalian circadian clock timing by decreasing serotonin transport in the SCN. Neuroscience, 2014, 275, 184-193.	1.1	31

REBECCA A PROSSER

#	Article	IF	CITATIONS
19	Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro. Neuroscience, 2014, 256, 252-261.	1.1	12
20	The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behavioural Brain Research, 2013, 243, 255-260.	1.2	18
21	Neuropeptide Y–Induced Phase Shifts of PER2::LUC Rhythms Are Mediated by Long-Term Suppression of Neuronal Excitability in a Phase-Specific Manner. Chronobiology International, 2012, 29, 91-102.	0.9	30
22	Cocaine modulates pathways for photic and nonphotic entrainment of the mammalian SCN circadian clock. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R740-R750.	0.9	30
23	Circadian and Acamprosate Modulation of Elevated Ethanol Drinking in <i>mPer</i> 2 Clock Gene Mutant Mice. Chronobiology International, 2011, 28, 664-672.	0.9	35
24	Acute Ethanol Disrupts Photic and Serotonergic Circadian Clock Phase-Resetting in the Mouse. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	28
25	Acamprosate-responsive brain sites for suppression of ethanol intake and preference. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1032-R1043.	0.9	16
26	Chronic Ethanol Disrupts Circadian Photic Entrainment and Daily Locomotor Activity in the Mouse. Alcoholism: Clinical and Experimental Research, 2010, 34, 1266-1273.	1.4	49
27	Environmental Modulation of Alcohol Intake in Hamsters: Effects of Wheel Running and Constant Light Exposure. Alcoholism: Clinical and Experimental Research, 2010, 34, 1651-1658.	1.4	35
28	Acute ethanol impairs photic and nonphotic circadian phase resetting in the Syrian hamster. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R411-R418.	0.9	49
29	Chronic ethanol attenuates circadian photic phase resetting and alters nocturnal activity patterns in the hamster. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R729-R737.	0.9	52
30	Tissueâ€ŧype plasminogen activatorâ€plasminâ€BDNF modulate glutamateâ€induced phaseâ€shifts of the mouse suprachiasmatic circadian clock <i>in vitro</i> . European Journal of Neuroscience, 2009, 30, 1451-1460.	1.2	30
31	The Mammalian Circadian Clock Exhibits Acute Tolerance to Ethanol. Alcoholism: Clinical and Experimental Research, 2009, 33, 2088-2093.	1.4	18
32	Ethanol modulates mammalian circadian clock phase resetting through extrasynaptic gaba receptor activation. Neuroscience, 2009, 164, 842-848.	1.1	42
33	Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience, 2008, 152, 837-848.	1.1	52
34	Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock. Neuroscience, 2006, 142, 547-555.	1.1	33
35	Serotonin phase-shifts the mouse suprachiasmatic circadian clock in vitro. Brain Research, 2003, 966, 110-115.	1.1	59
36	Leptin phase-advances the rat suprachiasmatic circadian clock in vitro. Neuroscience Letters, 2003, 336, 139-142.	1.0	80

REBECCA A PROSSER

#	Article	IF	CITATIONS
37	Intrinsic Role of Polysialylated Neural Cell Adhesion Molecule in Photic Phase Resetting of the Mammalian Circadian Clock. Journal of Neuroscience, 2003, 23, 652-658.	1.7	44
38	Translational and Transcriptional Inhibitors Block Serotonergic Phase Advances of the Suprachiasmatic Nucleus Circadian Pacemaker In Vitro. Journal of Biological Rhythms, 2002, 17, 137-146.	1.4	10
39	Removal of polysialic acid from the SCN potentiates nonphotic circadian phase resetting. Physiology and Behavior, 2002, 77, 361-369.	1.0	14
40	Glutamate Blocks Serotonergic Phase Advances of the Mammalian Circadian Pacemaker through AMPA and NMDA Receptors. Journal of Neuroscience, 2001, 21, 7815-7822.	1.7	42
41	Serotonergic Actions and Interactions on the SCN Circadian Pacemaker: In Vitro Investigations. Biological Rhythm Research, 2000, 31, 315-339.	0.4	37
42	Melatonin inhibits in vitro serotonergic phase shifts of the suprachiasmatic circadian clock. Brain Research, 1999, 818, 408-413.	1.1	17
43	Neuropeptide Y blocks GABAB-induced phase-shifts of the suprachiasmatic circadian clock in vitro. Brain Research, 1999, 821, 461-466.	1.1	6
44	TTX blocks baclofen-induced phase shifts of the mammalian circadian pacemaker in vitro. Brain Research, 1999, 841, 193-196.	1.1	14
45	Neuropeptide Y blocks serotonergic phase shifts of the suprachiasmatic circadian clock in vitro. Brain Research, 1998, 808, 31-41.	1.1	38
46	GABAB receptor stimulation phase-shifts the mammalian circadian clock in vitro. Brain Research, 1998, 807, 250-254.	1.1	19
47	In Vitro Circadian Rhythms of the Mammalian Suprachiasmatic Nuclei: Comparison of Multi-Unit and Single-Unit Neuronal Activity Recordings. Journal of Biological Rhythms, 1998, 13, 30-38.	1.4	26
48	c-fos mRNA in the suprachiasmatic nuclei in vitro shows a circadian rhythm and responds to a serotonergic agonist. Molecular Brain Research, 1994, 25, 151-156.	2.5	40
49	A possible glial role in the mammalian circadian clock. Brain Research, 1994, 643, 296-301.	1.1	125
50	Serotonergic phase advances of the mammalian circadian clock involve protein kinase A and K+ channel opening. Brain Research, 1994, 644, 67-73.	1.1	70
51	A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron, 1993, 11, 449-458.	3.8	637
52	Serotonin and the Mammalian Circadian System: II. Phase-Shifting Rat Behavioral Rhythms with Serotonergic Agonists. Journal of Biological Rhythms, 1993, 8, 17-31.	1.4	214
53	Serotonin and the Mammalian Circadian System: I. In Vitro Phase Shifts by Serotonergic Agonists and Antagonists. Journal of Biological Rhythms, 1993, 8, 1-16.	1.4	199
54	Serotonergic phase shifts of the mammalian circadian clock: effects of tetrodotoxin and high Mg2+. Brain Research, 1992, 573, 336-340.	1.1	57

4

REBECCA A PROSSER

#	Article	IF	CITATIONS
55	Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Research, 1991, 568, 185-192.	1.1	74
56	Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Research, 1991, 565, 158-161.	1.1	288
57	A serotonin agonist phase-shifts the circadian clock in the suprachiasmatic nuclei in vitro. Brain Research, 1990, 534, 336-339.	1.1	140
58	Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Research, 1988, 474, 348-352.	1.1	76
59	Suprachiasmatic Nuclear Lesions Eliminate Circadian Rhythms of Drinking and Activity, but Not of Body Temperature, in Male Rats. Journal of Biological Rhythms, 1988, 3, 1-22.	1.4	67