
Laura Otero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7964339/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΑ ΟΤΕΡΟ

#	Article	IF	CITATIONS
1	Single-digit ppm quantification of melamine in powdered milk driven by computer vision. Food Control, 2022, 131, 108424.	2.8	5
2	Effects of the application of static magnetic fields during potato freezing. Journal of Food Engineering, 2022, 316, 110838.	2.7	18
3	Is my food safe? – Al-based classification of lentil flour samples with trace levels of gluten or nuts. Food Chemistry, 2022, 386, 132832.	4.2	9
4	Hyperbaric Storage of Atlantic Razor Clams: Effect of the Storage Conditions. Food and Bioprocess Technology, 2021, 14, 530-541.	2.6	2
5	Effect of the frequency of weak oscillating magnetic fields on supercooling and freezing kinetics of pure water and 0.9% NaCl solutions. Journal of Food Engineering, 2020, 273, 109822.	2.7	10
6	Evaluation of the effects of weak oscillating magnetic fields applied during freezing on systems of different complexity. International Journal of Food Engineering, 2020, 16, .	0.7	1
7	Hyperbaric Storage at Room Temperature for Fruit Juice Preservation. Beverages, 2019, 5, 49.	1.3	9
8	Electromagnetic Freezing in a Widespread Frequency Range of Alternating Magnetic Fields. Food Engineering Reviews, 2019, 11, 93-103.	3.1	11
9	Effects of static magnetic fields on supercooling and freezing kinetics of pure water and 0.9% NaCl solutions. Journal of Food Engineering, 2018, 217, 34-42.	2.7	28
10	Hyperbaric cold storage versus conventional refrigeration for extending the shelf-life of hake loins. Innovative Food Science and Emerging Technologies, 2017, 41, 19-25.	2.7	35
11	Electromagnetic freezing: Effects of weak oscillating magnetic fields on crab sticks. Journal of Food Engineering, 2017, 200, 87-94.	2.7	57
12	Industrial viability of the hyperbaric method to store perishable foods at room temperature. Journal of Food Engineering, 2017, 193, 76-85.	2.7	42
13	Effects of Magnetic Fields on Freezing: Application to Biological Products. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 646-667.	5.9	110
14	Grape Processing by High Hydrostatic Pressure: Effect on Use of Non-Saccharomyces in Must Fermentation. Food and Bioprocess Technology, 2016, 9, 1769-1778.	2.6	43
15	Hyperbaric storage at room temperature: Effect of pressure level and storage time on the natural microbiota of strawberry juice. Innovative Food Science and Emerging Technologies, 2016, 33, 154-161.	2.7	18
16	Effect of hyperbaric storage at room temperature on color degradation of strawberry juice. Journal of Food Engineering, 2016, 169, 141-148.	2.7	28
17	Effect of hyperbaric storage at room temperature on the volatile profile of strawberry juice. LWT - Food Science and Technology, 2015, 62, 906-914.	2.5	16
18	Effect of hyperbaric storage at room temperature on pectin methylesterase activity and serum viscosity of strawberry juice. Innovative Food Science and Emerging Technologies, 2015, 30, 170-176.	2.7	24

LAURA OTERO

#	Article	IF	CITATIONS
19	Grape Processing by High Hydrostatic Pressure: Effect on Microbial Populations, Phenol Extraction and Wine Quality. Food and Bioprocess Technology, 2015, 8, 277-286.	2.6	71
20	High-Pressure Freezing. , 2014, , 515-538.		5
21	Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innovative Food Science and Emerging Technologies, 2014, 26, 51-58.	2.7	14
22	Hyperbaric storage at room temperature for food preservation: A study in strawberry juice. Innovative Food Science and Emerging Technologies, 2012, 15, 14-22.	2.7	65
23	Pressure-shift nucleation: A potential tool for freeze concentration of fluid foods. Innovative Food Science and Emerging Technologies, 2012, 13, 86-99.	2.7	27
24	Orange juice pvT-properties for high pressure processing and modeling purposes: Importance of soluble solids concentration. Food Research International, 2012, 46, 83-91.	2.9	13
25	The effects of high hydrostatic pressure at subzero temperature on the quality of ready-to-eat cured beef carpaccio. Meat Science, 2012, 92, 575-581.	2.7	31
26	Thermal expansion coefficient and specific heat capacity from sound velocity measurements in tomato paste from 0.1 up to 350MPa and as a function of temperature. Journal of Food Engineering, 2011, 104, 341-347.	2.7	7
27	Specific volume and compressibility measurements of tomato paste at moderately high pressure as a function of temperature. Journal of Food Engineering, 2011, 103, 251-257.	2.7	11
28	Modeling Thermophysical Properties of Food Under High Pressure. Critical Reviews in Food Science and Nutrition, 2010, 50, 344-368.	5.4	14
29	Prediction of ice content in biological model solutions when frozen under high pressure. Biotechnology Progress, 2009, 25, 454-460.	1.3	6
30	Experimental determination of the amount of ice instantaneously formed in high-pressure shift freezing. Journal of Food Engineering, 2009, 95, 670-676.	2.7	25
31	Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innovative Food Science and Emerging Technologies, 2009, 10, 434-440.	2.7	48
32	High-pressure shift freezing: recrystallization during storage. European Food Research and Technology, 2008, 227, 1367-1377.	1.6	21
33	lce content and temperature determination from ultrasonic measurements in partially frozen foods. Journal of Food Engineering, 2008, 88, 272-279.	2.7	24
34	Liquid Water-Ice I Phase Diagrams under High Pressure: Sodium Chloride and Sucrose Models for Food Systems. Biotechnology Progress, 2008, 21, 439-445.	1.3	25
35	The Initial Freezing Temperature of Foods at High Pressure. Critical Reviews in Food Science and Nutrition, 2008, 48, 328-340.	5.4	18
36	Conventional freezing plus high pressure–low temperature treatment: Physical properties, microbial quality and storage stability of beef meat. Meat Science, 2007, 77, 616-625.	2.7	106

LAURA OTERO

#	Article	IF	CITATIONS
37	Modelling industrial scale high-pressure-low-temperature processes. Journal of Food Engineering, 2007, 83, 136-141.	2.7	10
38	Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms. Computers and Electronics in Agriculture, 2007, 56, 101-110.	3.7	40
39	A model to design high-pressure processes towards an uniform temperature distribution. Journal of Food Engineering, 2007, 78, 1463-1470.	2.7	61
40	Assessment of cell damage in high-pressure-shift frozen broccoli: comparison with market samples. European Food Research and Technology, 2006, 224, 101-107.	1.6	24
41	High-pressure-shift freezing: Main factors implied in the phase transition time. Journal of Food Engineering, 2006, 72, 354-363.	2.7	51
42	Evaluation of the thermophysical properties of tylose gel under pressure in the phase change domain. Food Hydrocolloids, 2006, 20, 449-460.	5.6	29
43	High-pressure shift freezing versus high-pressure assisted freezing: Effects on the microstructure of a food model. Food Hydrocolloids, 2006, 20, 510-522.	5.6	82
44	Artificial neural networks: a promising tool to design and optimize high-pressure food processes. Journal of Food Engineering, 2005, 69, 299-306.	2.7	60
45	High-Pressure Freezing. , 2005, , 627-652.		3
46	A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 2004, 62, 89-95.	2.7	89
47	Ice VI freezing of meat: supercooling and ultrastructural studies. Meat Science, 2004, 66, 709-718.	2.7	41
48	Detection of Iberian ham aroma by a semiconductor multisensorial system. Meat Science, 2003, 65, 1175-1185.	2.7	14
49	Modelling heat transfer in high pressure food processing: a review. Innovative Food Science and Emerging Technologies, 2003, 4, 121-134.	2.7	100
50	Some Interrelated Thermophysical Properties of Liquid Water and Ice. I. A User-Friendly Modeling Review for Food High-Pressure Processing. Critical Reviews in Food Science and Nutrition, 2002, 42, 339-352.	5.4	47
51	A Model for Real Thermal Control in High-Pressure Treatment of Foods. Biotechnology Progress, 2002, 18, 904-908.	1.3	28
52	High-Presssure Shift Freezing. Part 2. Modeling of Freezing Times for a Finite Cylindrical Model. Biotechnology Progress, 2000, 16, 1037-1043.	1.3	25
53	High-Pressure Shift Freezing. Part 1. Amount of Ice Instantaneously Formed in the Process. Biotechnology Progress, 2000, 16, 1030-1036.	1.3	74
54	Soybean Vegetable Protein (Tofu) Preserved with High Pressure. Journal of Agricultural and Food Chemistry, 2000, 48, 2943-2947.	2.4	49

#	Article	IF	CITATIONS
55	Contrasting effects of high-pressure-assisted freezing and conventional air-freezing on eggplant tissue microstructure. European Food Research and Technology, 1998, 206, 338-342.	0.6	60