Changlun Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7964295/changlun-chen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

206 21,488 78 143 h-index g-index citations papers 23,589 229 7.5 7.23 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
206	Insight into UV-induced simultaneous photocatalytic degradation of TiCT MXene and reduction of U(VI) <i>Journal of Hazardous Materials</i> , 2022 , 430, 128377	12.8	1
205	A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107325	6.8	3
204	Interconnected hierarchical nickel-carbon hybrids assembled by porous nanosheets for Cr(VI) reduction with formic acid. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 213-222	9.3	4
203	3D magnetic flower-shaped yolk-shell like structure Fe3O4@N-doped carbon@MnO2 composites for the efficient removal of Re(VII) and As(V). <i>Applied Surface Science</i> , 2022 , 572, 151333	6.7	1
202	Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution. <i>Journal of Molecular Liquids</i> , 2022 , 359, 119257	6	O
201	UV-induced simultaneous removal of GO and U(VI): The role of aggregation, photo-transformation, adsorption and reduction. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 648, 129151	5.1	
200	Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. <i>Chemical Communications</i> , 2021 , 57, 8452-8455	5.8	1
199	Fabrication of a novel Co/Ni-MOFs@BiOI composite with boosting photocatalytic degradation of methylene blue under visible light. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106194	6.8	1
198	Colloidal Behaviors of Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	9
197	Solvent-free engineering of Fe/FeC nanoparticles encased in nitrogen-doped carbon nanoshell materials for highly efficient removal of uranyl ions from acidic solution. <i>Journal of Colloid and Interface Science</i> , 2020 , 575, 16-23	9.3	12
196	Retraction: Enhanced adsorption of Eu(iii) on mesoporous AlO/expanded graphite composites investigated by macroscopic and microscopic techniques. <i>Dalton Transactions</i> , 2020 , 49, 5742	4.3	1
195	Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. <i>Applied Radiation and Isotopes</i> , 2020 , 162, 109160	1.7	11
194	Metal-organic frameworks-derived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction. <i>Chemical Engineering Journal</i> , 2020 , 389, 123428	14.7	33
193	Three dimensional flower-like magnetic polyethyleneimine@MoS composites for highly efficient removal of Cr(VI) and Pb(II) ions. <i>Journal of Colloid and Interface Science</i> , 2020 , 580, 550-560	9.3	17
192	Colloidal properties and stability of UV-transformed graphene oxide in aqueous solutions: The role of disorder degree. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121097	12.8	14
191	Few-layered metal-organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment. <i>Chemical Engineering Journal</i> , 2020 , 383, 123189	14.7	21
190	Mutual effect of U(VI) and phosphate on the reactivity of nanoscale zero-valent iron (nZVI) for their co-removal. <i>Journal of Molecular Liquids</i> , 2020 , 297, 111853	6	12

189	Plasma-facilitated modification of pumpkin vine-based biochar and its application for efficient elimination of uranyl from aqueous solution. <i>Plasma Science and Technology</i> , 2019 , 21, 095502	1.5	11
188	Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. <i>Progress in Materials Science</i> , 2019 , 103, 180-234	42.2	229
187	Porous NiFe-oxide nanocubes derived from prussian blue analogue as efficient adsorbents for the removal of toxic metal ions and organic dyes. <i>Journal of Hazardous Materials</i> , 2019 , 379, 120786	12.8	39
186	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. <i>Science China Chemistry</i> , 2019 , 62, 933-967	7.9	186
185	Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 735-743	9.3	48
184	Mutual effects behind the simultaneous U(VI) and humic acid adsorption by hierarchical MWCNT/ZIF-8 composites. <i>Journal of Molecular Liquids</i> , 2019 , 288, 110971	6	18
183	Fabrication of Si/TiBased amino-functionalized hybrids and their adsorption towards cobalt(II). <i>Journal of Molecular Liquids</i> , 2019 , 289, 111051	6	11
182	Synthesis of FeNi/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution. <i>Journal of Cleaner Production</i> , 2019 , 230, 1305-1315	10.3	27
181	Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study. <i>Environmental Pollution</i> , 2019 , 251, 821-829	9.3	17
180	A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution. <i>Environmental Pollution</i> , 2019 , 251, 547-554	9.3	28
179	Encapsulation of Fe0-dominated Fe3O4/Fe0/Fe3C nanoparticles into carbonized polydopamine nanospheres for catalytic degradation of tetracycline via persulfate activation. <i>Chemical Engineering Journal</i> , 2019 , 372, 304-311	14.7	56
178	Coupling g-CN nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 550, 117-12	29.3	53
177	Adsorption of radionuclides on carbon-based nanomaterials. <i>Interface Science and Technology</i> , 2019 , 141-215	2.3	2
176	Removal of toxic/radioactive metal ions by metal-organic framework-based materials. <i>Interface Science and Technology</i> , 2019 , 217-279	2.3	4
175	Application of nZVI and its composites into the treatment of toxic/radioactive metal ions. <i>Interface Science and Technology</i> , 2019 , 281-330	2.3	9
174	Interactions between radionuclides and the oxide-water interfaces in the environment. <i>Interface Science and Technology</i> , 2019 , 29, 39-105	2.3	1
173	MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped graphene-CNT frameworks as a recyclable catalyst for Cr(VI) reduction with formic acid. <i>Carbon</i> , 2019 , 148, 52-63	10.4	62
172	Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI). <i>Journal of Environmental Sciences</i> , 2019 , 76, 377-387	6.4	37

171	A computational study on the tunability of woven covalent organic frameworks for photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 546-553	3.6	9
170	Construction of novel graphene-based materials GO@SiO@C@Ni for Cr(VI) removal from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 557, 254-265	9.3	26
169	Efficient removal of Cd(II) by core-shell Fe3O4@polydopamine microspheres from aqueous solution. <i>Journal of Molecular Liquids</i> , 2019 , 295, 111724	6	14
168	Exploration of the adsorption performance and mechanism of zeolitic imidazolate framework-8@graphene oxide for Pb(II) and 1-naphthylamine from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 410-420	9.3	75
167	Adsorption of 17Eestradiol from aqueous solutions by a novel hierarchically nitrogen-doped porous carbon. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 700-708	9.3	35
166	Insights into the crystal size and morphology of photocatalysts. <i>Journal of Colloid and Interface Science</i> , 2019 , 538, 638-647	9.3	14
165	Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. <i>Journal of Colloid and Interface Science</i> , 2019 , 537, A1-A10	9.3	103
164	Interaction mechanism between different facet TiO2 and U(VI): Experimental and density-functional theory investigation. <i>Chemical Engineering Journal</i> , 2019 , 359, 944-954	14.7	49
163	MOFs-derived magnetic chestnut shell-like hollow sphere NiO/Ni@C composites and their removal performance for arsenic(V). <i>Chemical Engineering Journal</i> , 2019 , 362, 413-421	14.7	49
162	Influence of carbonate on sequestration of U(VI) on perovskite. <i>Journal of Hazardous Materials</i> , 2019 , 364, 100-107	12.8	31
161	Gamma-ferric oxide nanoparticles decoration onto porous layered double oxide belts for efficient removal of uranyl. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 265-275	9.3	40
160	Competitive adsorption of U(VI) and Co(II) on montmorillonite: A batch and spectroscopic approach. <i>Applied Clay Science</i> , 2018 , 157, 121-129	5.2	46
159	Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. <i>Chemical Society Reviews</i> , 2018 , 47, 2322-2356	58.5	1077
158	Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. <i>Environmental Science: Nano</i> , 2018 , 5, 1298-1340	7.1	57
157	Highly efficient removal of As(V) by using NiAl layered double oxide composites. <i>Applied Surface Science</i> , 2018 , 448, 599-608	6.7	43
156	Interaction between U(VI) with sulfhydryl groups functionalized graphene oxides investigated by batch and spectroscopic techniques. <i>Journal of Colloid and Interface Science</i> , 2018 , 524, 129-138	9.3	35
155	Synthesis of highly porous inorganic adsorbents derived from metal-organic frameworks and their application in efficient elimination of mercury(II). <i>Journal of Colloid and Interface Science</i> , 2018 , 517, 61-	7 ⁹ ·3	36
154	Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 1-8	9.3	73

153	Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption. <i>Applied Surface Science</i> , 2018 , 444, 691-698	6.7	27
152	Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. <i>Science of the Total Environment</i> , 2018 , 630, 951-959	10.2	77
151	Coagulation behavior of humic acid in aqueous solutions containing Cs, Sr and Eu: DLS, EEM and MD simulations. <i>Environmental Pollution</i> , 2018 , 236, 835-843	9.3	34
150	In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. <i>Chemical Engineering Journal</i> , 2018 , 331, 395-405	14.7	108
149	Investigation of the adsorption mechanisms of Pb(II) and 1-naphthol by Ecyclodextrin modified graphene oxide nanosheets from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2018 , 530, 154-162	9.3	82
148	Retention of U(VI) by the Formation of Fe Precipitates from Oxidation of Fe(II). ACS Earth and Space Chemistry, 2018 , 2, 968-976	3.2	15
147	Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity. <i>Environmental Science: Nano</i> , 2018 , 5, 362-371	7.1	44
146	Exploring the Aggregation Mechanism of Graphene Oxide in the Presence of Radioactive Elements: Experimental and Theoretical Studies. <i>Environmental Science & Experimental Science & Ex</i>	10.3	36
145	Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI). Journal of Cleaner Production, 2018 , 204, 896-905	10.3	60
144	Biochar Derived from Sawdust Embedded with Molybdenum Disulfide for Highly Selective Removal of Pb2+. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2689-2698	5.6	52
143	Spectroscopic Investigation of Enhanced Adsorption of U(VI) and Eu(III) on Magnetic Attapulgite in Binary System. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 7533-7543	3.9	24
142	The influence of dissolved Si on Ni precipitate formation at the kaolinite water interface: Kinetics, DRS and EXAFS analysis. <i>Chemosphere</i> , 2017 , 173, 135-142	8.4	18
141	Interaction Mechanism of Re(VII) with Zirconium Dioxide Nanoparticles Archored onto Reduced Graphene Oxides. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2163-2171	8.3	57
140	Bonding properties of humic acid with attapulgite and its influence on U(VI) sorption. <i>Chemical Geology</i> , 2017 , 464, 91-100	4.2	39
139	Insights into key factors controlling GO stability in natural surface waters. <i>Journal of Hazardous Materials</i> , 2017 , 335, 56-65	12.8	52
138	Spectroscopic and Modeling Investigation of Eu(III)/U(VI) Sorption on Nanomagnetite from Aqueous Solutions. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 5493-5502	8.3	54
137	Adsorption of Europium on Al-substituted goethite. <i>Journal of Molecular Liquids</i> , 2017 , 236, 445-451	6	22
136	Mechanical, electronic and thermodynamic properties of hexagonal and orthorhombic U 2 Mo: A first-principle calculation. <i>Progress in Nuclear Energy</i> , 2017 , 99, 110-118	2.3	2

135	Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. <i>Environmental Science: Nano</i> , 2017 , 4, 1016-1024	7.1	62
134	Fabrication of CoreBhell [email[protected] Nanocomposite for Efficient As(V) Adsorption and Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 4399-4407	8.3	42
133	Fabrication of hierarchical core-shell polydopamine@MgAl-LDHs composites for the efficient enrichment of radionuclides. <i>Applied Surface Science</i> , 2017 , 396, 1726-1735	6.7	50
132	Effect of silicate on the sorption properties of kaolinite: removal of U(VI) and mechanism. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2017 , 311, 1899-1907	1.5	6
131	Investigation of U(VI) sorption on silica aerogels: Effects of specific surface area, pH and coexistent electrolyte ions. <i>Journal of Molecular Liquids</i> , 2017 , 246, 140-148	6	8
130	Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of U(VI) and Am(III). <i>Environmental Science & Enrichment Rechnology</i> , 2017 , 51, 12274-12282	10.3	113
129	Screening of Zirconium-Based Metal Drganic Frameworks for Efficient Simultaneous Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11496-11503	8.3	73
128	EDTA functionalized FeO/graphene oxide for efficient removal of U(VI) from aqueous solutions. Journal of Colloid and Interface Science, 2017, 506, 300-307	9.3	70
127	Synthesis of a corelinell magnetic Fe3O4NH2@PmPD nanocomposite for efficient removal of Cr(VI) from aqueous media. <i>RSC Advances</i> , 2017 , 7, 36231-36241	3.7	39
126	New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions. <i>Environmental Science & Environmental Sc</i>	10.3	94
125	Characterization of the sorption behavior and mechanism of U(VI) on sericite by batch experiments and spectroscopic techniques. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2017 , 313, 333-342	1.5	1
124	Cr(VI) Reduction and Immobilization by Core-Double-Shell Structured Magnetic [email[protected] Idazolate Frameworks-8 Microspheres. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6795-6802	8.3	151
123	Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 197-206	9.3	83
122	Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. <i>Chemical Engineering Journal</i> , 2017 , 310, 292-299	14.7	113
121	Fabrication of sodium titanate nanospheres as efficient sorbent for the removal of U(VI) from aqueous solution. <i>Journal of Molecular Liquids</i> , 2017 , 225, 101-106	6	15
120	Spectroscopic and modeling investigation of efficient removal of U(VI) on a novel magnesium silicate/diatomite. <i>Separation and Purification Technology</i> , 2017 , 174, 425-431	8.3	49
119	Amino Siloxane Oligomer Modified Graphene Oxide Composite for the Efficient Capture of U(VI) and Eu(III) from Aqueous Solution. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10290-10297	8.3	50
118	Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 59, 389-394	5.3	80

(2015-2016)

117	Direct Synthesis of Bacteria-Derived Carbonaceous Nanofibers as a Highly Efficient Material for Radionuclides Elimination. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4608-4616	8.3	57
116	Polyaniline-Modified Mg/Al Layered Double Hydroxide Composites and Their Application in Efficient Removal of Cr(VI). <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4361-4369	8.3	147
115	Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co-removal. Journal of Hazardous Materials, 2016 , 314, 249-259	12.8	22
114	A coreBhell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. <i>Polymer Chemistry</i> , 2016 , 7, 785-794	4.9	128
113	One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. <i>Journal of Colloid and Interface Science</i> , 2016 , 472, 99-107	9.3	130
112	Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. <i>Science China Chemistry</i> , 2016 , 59, 150-158	7.9	92
111	Magnetic polydopamine decorated with MgAl LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1737-1746	13	209
110	Alkali-treated cellulose fibers for U(VI) separation and enrichment. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2016 , 308, 981-990	1.5	6
109	Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. Journal of Molecular Liquids, 2016 , 213, 58-68	6	42
108	Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 62-70	9.3	145
107	Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI). <i>Radiochimica Acta</i> , 2016 , 104, 481-490	1.9	10
106	Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. <i>Journal of Hazardous Materials</i> , 2016 , 313, 253-61	12.8	141
105	Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI). <i>Applied Surface Science</i> , 2016 , 384, 1-9	6.7	273
104	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	73
103	Effect of silicate on U(VI) sorption to EAl2O3: Batch and EXAFS studies. <i>Chemical Engineering Journal</i> , 2015 , 269, 371-378	14.7	51
102	Superior adsorption capacity of g-CNIfor heavy metal ions from aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2015 , 456, 7-14	9.3	136
101	Synthesis of a novel organic-inorganic hybrid of polyaniline/titanium phosphate for Re(VII) removal. <i>Dalton Transactions</i> , 2015 , 44, 8917-25	4.3	53
100	Hierarchical MWCNTs/FeDIPANI magnetic composite as adsorbent for methyl orange removal. Journal of Colloid and Interface Science, 2015, 450, 189-195	9.3	92

99	Evaluation of the Influence of Environmental Conditions on the Removal of Pb(II) from Wastewater by Ca-rectorite. <i>Separation Science and Technology</i> , 2015 , 150623132817002	2.5	3
98	High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. <i>Journal of Nuclear Materials</i> , 2015 , 466, 56-64	3.3	131
97	Competitive Adsorption of Pb , Ni , and Sr Ions on Graphene Oxides: A Combined Experimental and Theoretical Study. <i>ChemPlusChem</i> , 2015 , 80, 480-484	2.8	89
96	Ozone degradation of 1-naphthol on multiwalled carbon nanotubes/iron oxides and recycling of the adsorbent. <i>Chemical Engineering Journal</i> , 2015 , 262, 1303-1310	14.7	32
95	Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 237-46	9.3	78
94	Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1410-7	4.5	63
93	A catechin-modified carbon paste electrode for electrocatalytic determination of neurotransmitters. <i>Analytical Methods</i> , 2015 , 7, 5641-5648	3.2	3
92	Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. <i>Applied Surface Science</i> , 2015 , 349, 129-137	6.7	115
91	Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite. <i>Applied Clay Science</i> , 2014 , 87, 1-6	5.2	39
90	Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(VI). <i>Dalton Transactions</i> , 2014 , 43, 7050-6	4.3	44
89	Surface functional groups and defects on carbon nanotubes affect adsorption desorption hysteresis of metal cations and oxoanions in water. <i>Environmental Science: Nano</i> , 2014 , 1, 488-495	7.1	57
88	Critical evaluation of adsorption-desorption hysteresis of heavy metal ions from carbon nanotubes: influence of wall number and surface functionalization. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 1144-51	4.5	22
87	Analytical approaches to the speciation of lanthanides at solid-water interfaces. <i>TrAC - Trends in Analytical Chemistry</i> , 2014 , 61, 107-132	14.6	62
86	Hierarchical GOs/Fe3O4/PANI magnetic composites as adsorbent for ionic dye pollution treatment. <i>RSC Advances</i> , 2014 , 4, 38192	3.7	57
85	Impact of Al2O3 on the aggregation and deposition of graphene oxide. <i>Environmental Science & Environmental & Environm</i>	10.3	131
84	Enhanced Electrochemical Performance of Reduced Graphene Oxides by H2/Ar Plasma Treatment. Journal of Physical Chemistry C, 2014 , 118, 28440-28447	3.8	24
83	Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. <i>Environmental Science & Environmental &</i>	10.3	474
82	Adsorption of Methyl Orange Dye Onto Multiwalled Carbon Nanotubes. <i>Procedia Environmental Sciences</i> , 2013 , 18, 890-895		71

(2012-2013)

81	Eu(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. Journal of Colloid and Interface Science, 2013 , 393, 249-56	9.3	40
80	Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2013 , 405, 211-7	9.3	117
79	Synthesis of water-dispersible Fe3O4@Ecyclodextrin by plasma-induced grafting technique for pollutant treatment. <i>Chemical Engineering Journal</i> , 2013 , 229, 296-303	14.7	71
78	Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2. <i>Journal of Colloid and Interface Science</i> , 2013 , 398, 234-9	9.3	120
77	Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. <i>Dalton Transactions</i> , 2013 , 42, 14710-7	4.3	148
76	Synthesizing the Composites of Graphene Oxide-Wrapped Polyaniline Hollow Microspheres for High-Performance Supercapacitors. <i>Science of Advanced Materials</i> , 2013 , 5, 1686-1693	2.3	12
<i>75</i>	Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. <i>RSC Advances</i> , 2012 , 2, 9286	3.7	203
74	Spherical ENi(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. <i>Chemical Communications</i> , 2012 , 48, 2773-5	5.8	213
73	Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. <i>Dalton Transactions</i> , 2012 , 41, 13388-94	4.3	79
7²	Mutual effects of copper and phosphate on their interaction with EAl2O3: combined batch macroscopic experiments with DFT calculations. <i>Journal of Hazardous Materials</i> , 2012 , 237-238, 199-20	8 ^{12.8}	45
71	Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	421
70	Investigation of radionuclide 60Co(II) binding to TiO2 by batch technique, surface complexation model and DFT calculations. <i>Science China Chemistry</i> , 2012 , 55, 1752-1759	7.9	16
69	Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. <i>ACS Applied Materials & Date of the Samp; Interfaces</i> , 2012 , 4, 4991-5000	9.5	430
68	Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. <i>RSC Advances</i> , 2012 , 2, 8821	3.7	259
67	Synthesis of graphene-based Pt nanoparticles by a one-step in situ plasma approach under mild conditions. <i>Applied Physics Letters</i> , 2012 , 101, 033103	3.4	22
66	Plasma Synthesis of Surface-Functionalized Graphene-Based Platinum Nanoparticles: Highly Active Electrocatalysts as Electrodes for Direct Methanol Fuel Cells. <i>ChemPlusChem</i> , 2012 , 77, 432-436	2.8	27
65	Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). <i>Chemical Engineering Journal</i> , 2012 , 185-186, 144-150	14.7	93

63	Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. <i>Dalton Transactions</i> , 2011 , 40, 10945-52	4.3	434
62	Oxygen functionalization of multiwall carbon nanotubes by Ar/H2O plasma treatment. <i>Diamond and Related Materials</i> , 2011 , 20, 153-156	3.5	52
61	Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt(II) Removal. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25234-25240	3.8	347
60	Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17353		220
59	Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. <i>Environmental Science & Environmental Sc</i>	10.3	431
58	Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. <i>Environmental Science & Environmental Science & </i>	10.3	1372
57	Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. <i>Chemical Engineering Journal</i> , 2011 , 174, 126-133	14.7	108
56	Carbon nanotubes as adsorbents in environmental pollution management: A review. <i>Chemical Engineering Journal</i> , 2011 , 170, 395-410	14.7	818
55	The adsorption of Pb(II) on Mg2Al layered double hydroxide. <i>Chemical Engineering Journal</i> , 2011 , 171, 167-174	14.7	202
54	Effect of environmental conditions on the retention behaviour of Pb(II) by hematite. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 1099-1106	3.5	16
53	Synthesis of few-layered graphene by H2O2 plasma etching of graphite. <i>Applied Physics Letters</i> , 2011 , 98, 183114	3.4	50
52	Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. <i>Journal of Hazardous Materials</i> , 2011 , 185, 463-71	12.8	123
51	Adsorption of Sr(II) and Eu(III) on Na-rectorite: Effect of pH, ionic strength, concentration and modelling. <i>Radiochimica Acta</i> , 2010 , 98, 421-429	1.9	36
50	Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. <i>Chemosphere</i> , 2010 , 79, 679-85	8.4	118
49	Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water. <i>Applied Physics Letters</i> , 2010 , 96, 131504	3.4	77
48	Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21524-21530	3.8	151
47	Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 6779-85	3.4	253
46	Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. <i>Science China Chemistry</i> , 2010 , 53, 1420-1428	7.9	86

(2007-2010)

45	Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. <i>Journal of Hazardous Materials</i> , 2010 , 178, 333-40	12.8	252
44	Effect of environmental conditions on Pb(II) adsorption on EMnO2. <i>Chemical Engineering Journal</i> , 2010 , 164, 49-55	14.7	137
43	Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. <i>Carbon</i> , 2010 , 48, 939-948	10.4	134
42	Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. <i>Journal of Hazardous Materials</i> , 2009 , 162, 1542-50	12.8	344
41	Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). <i>Journal of Hazardous Materials</i> , 2009 , 164, 923-8	12.8	396
40	Comparative studies of cobalt sorption and desorption on bentonite, alumina and silica: effect of pH and fulvic acid. <i>Desalination</i> , 2009 , 244, 283-292	10.3	31
39	Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7659-7665	3.8	226
38	Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. <i>Environmental Science & Environmental Science & Environme</i>	10.3	324
37	Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect. <i>Radiochimica Acta</i> , 2009 , 97,	1.9	52
36	Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. <i>Radiochimica Acta</i> , 2008 , 96, 23-29	1.9	66
35	Sorption of Ni2+ on Na-rectorite studied by batch and spectroscopy methods. <i>Applied Geochemistry</i> , 2008 , 23, 2767-2777	3.5	117
34	Adsorption of Th(IV) onto Al-pillared rectorite: Effect of pH, ionic strength, temperature, soil humic acid and fulvic acid. <i>Applied Clay Science</i> , 2008 , 38, 219-226	5.2	46
33	Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. <i>Applied Clay Science</i> , 2008 , 41, 37-46	5.2	225
32	Adsorption of thorium(IV) on MX-80 bentonite: Effect of pH, ionic strength and temperature. <i>Applied Clay Science</i> , 2008 , 41, 17-23	5.2	110
31	Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes. <i>Journal of Colloid and Interface Science</i> , 2008 , 323, 33-41	9.3	148
30	Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. <i>Journal of Hazardous Materials</i> , 2008 , 154, 407-16	12.8	342
29	Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. <i>Carbon</i> , 2008 , 46, 1741-1750	10.4	164
28	Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. <i>Applied Radiation and Isotopes</i> , 2007 , 65, 155-63	1.7	137

27	Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. <i>Applied Radiation and Isotopes</i> , 2007 , 65, 375-81	1.7	106
26	Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 296, 109-116	5.1	128
25	Direct observation of macromolecular structures of humic acid by AFM and SEM. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 302, 121-125	5.1	94
24	Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 302, 449-454	5.1	166
23	Effect of pH, ionic strength, fulvic acid and humic acid on sorption of Th(IV) on Na-rectorite. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2007 , 274, 153-160	1.5	47
22	Sorption behavior of Co(II) on FAl2O3 in the presence of humic acid. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2007 , 273, 227-233	1.5	48
21	Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto EAl2O3. <i>Applied Geochemistry</i> , 2007 , 22, 436-445	3.5	120
20	Sorption of Th(IV) on Na-rectorite: Effect of HA, ionic strength, foreign ions and temperature. <i>Applied Geochemistry</i> , 2007 , 22, 2892-2906	3.5	68
19	Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption. <i>Radiochimica Acta</i> , 2007 , 95,	1.9	53
18	EMo2N/Co3Mo3N composite material for electrochemical supercapacitor electrode. <i>Materials Chemistry and Physics</i> , 2006 , 95, 84-88	4.4	34
17	Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride. <i>Materials Chemistry and Physics</i> , 2006 , 97, 156-161	4.4	39
16	Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite. <i>Radiochimica Acta</i> , 2006 , 94,	1.9	84
15	Influence of soil humic acid and fulvic acid on sorption of thorium(IV) on MX-80 bentonite. <i>Radiochimica Acta</i> , 2006 , 94, 429-434	1.9	82
14	Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 9144-9149	3.9	465
13	Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. <i>Applied Radiation and Isotopes</i> , 2006 , 64, 414-21	1.7	48
12	Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite. <i>Applied Radiation and Isotopes</i> , 2006 , 64, 455-61	1.7	35
11	Using of chelating resin to study the kinetic desorption of Eu(III) from humic acidAl2O3 colloid surfaces. <i>Surface Science</i> , 2006 , 600, 478-483	1.8	63
10	Sorption and diffusion of 90Sr2+in compacted bentonite investigated by a capillary method. Journal of Radioanalytical and Nuclear Chemistry, 2006, 267, 357-362	1.5	12

LIST OF PUBLICATIONS

9	Effect of fulvic acid on the sorption and desorption of 90Sr2+ on red earth. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2006 , 270, 445-452	1.5	8
8	Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated gamma-Al2O3: a chelating resin exchange study. <i>Environmental Science & Environmental Science & Environme</i>	8 ⁴⁻⁸ 3	106
7	Sorption of 243Am(III) to multiwall carbon nanotubes. <i>Environmental Science & Environmental Science &</i>	10.3	322
6	Effect of pH and Fulvic Acid on the Sorption and Diffusion of Europium Ions in Compacted Bentonite as Studied by the Capillary Method. <i>Adsorption Science and Technology</i> , 2005 , 23, 801-811	3.6	
5	Study of nano-Au-assembled amperometric CO gas sensor. <i>Sensors and Actuators B: Chemical</i> , 2005 , 107, 866-871	8.5	23
4	The concentration and pH dependent diffusion of 137Cs in compacted bentonite by using capillary method. <i>Journal of Nuclear Materials</i> , 2005 , 345, 184-191	3.3	29
3	Sorption and desorption of Eu(III) on alumina. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2005 , 266, 419-424	1.5	28
2	Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. <i>Radiochimica Acta</i> , 2005 , 93, 273-278	1.9	64
1	Study of multi-wall carbon nanotubes self-assembled electrode and its application to the determination of carbon monoxide. <i>Sensors and Actuators B: Chemical</i> , 2004 , 99, 1-5	8.5	69