
Danila Gasperini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7964170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amine–Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angewandte Chemie, 2021, 133, 14393-14415.	2.0	4
2	Amine–Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angewandte Chemie - International Edition, 2021, 60, 14272-14294.	13.8	85
3	Phosphirenium Ions as Masked Phosphenium Catalysts: Mechanistic Evaluation and Application in Synthesis. ACS Catalysis, 2021, 11, 5452-5462.	11.2	15
4	In vitro and in cellulo anti-diabetic activity of Aul- and AuIII-isothiourea complexes. Inorganic Chemistry Communication, 2021, 130, 108666.	3.9	1
5	Heterobimetallic Complexes of 1,1-Diphosphineamide Ligands. Organometallics, 2021, 40, 148-155.	2.3	4
6	Hydrogen/Halogen Exchange of Phosphines for the Rapid Formation of Cyclopolyphosphines. Inorganic Chemistry, 2021, 60, 16826-16833.	4.0	1
7	Seeking Heteroatom-Rich Compounds: Synthetic and Mechanistic Studies into Iron Catalyzed Dehydrocoupling of Silanes. ACS Catalysis, 2020, 10, 6102-6112.	11.2	25
8	Regression analysis of properties of [Au(IPr)(CHR ₂)] complexes. Dalton Transactions, 2019, 48, 7693-7703.	3.3	4
9	Chiral Au ^I ―and Au ^{III} â€Isothiourea Complexes: Synthesis, Characterization and Application. Chemistry - A European Journal, 2019, 25, 1064-1075.	3.3	11
10	Expedient Syntheses of Neutral and Cationic Au(I)–NHC Complexes. Organometallics, 2017, 36, 3645-3653.	2.3	19
11	Gold(I)â€Catalysed Cyclisation of Alkynoic Acids: Towards an Efficient and Ecoâ€Friendly Synthesis of γâ€, Î′― and ϵâ€Lactones. Advanced Synthesis and Catalysis, 2016, 358, 3857-3862.	4.3	36
12	Influence of bulky yet flexible N-heterocyclic carbene ligands in gold catalysis. Beilstein Journal of Organic Chemistry, 2015, 11, 1809-1814.	2.2	15
13	Gold–Acetonyl Complexes: From Sideâ€Products to Valuable Synthons. Chemistry - A European Journal, 2015, 21, 5403-5412.	3.3	51
14	Highly Efficient Gold(I)-Catalyzed Regio- and Stereoselective Hydrocarboxylation of Internal Alkynes. ACS Catalysis, 2015, 5, 6918-6921.	11.2	64
15	Highly Efficient and Eco-Friendly Gold-Catalyzed Synthesis of Homoallylic Ketones. ACS Catalysis, 2014, 4, 2701-2705.	11.2	56
16	Palladium-Catalyzed Arylic/Allylic Aminations: Permutable Domino Sequences for the Synthesis of Dihydroquinolines from Morita–Baylis–Hillman Adducts. Organic Letters, 2013, 15, 3050-3053.	4.6	22