Henri De Greve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7963899/publications.pdf

Version: 2024-02-01

394421 454955 33 992 19 30 citations h-index g-index papers 34 34 34 1581 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Production of Designer VHH-Based Antibodies in Plants. Methods in Molecular Biology, 2022, 2446, 205-230.	0.9	2
2	Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Current Opinion in Biotechnology, 2020, 61, 96-101.	6.6	18
3	Structural Analysis of Jumbo Coliphage phAPEC6. International Journal of Molecular Sciences, 2020, 21, 3119.	4.1	13
4	Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nature Microbiology, 2019, 4, 1805-1814.	13.3	23
5	Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. Science Advances, 2018, 4, eaap9714.	10.3	37
6	In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS ONE, 2018, 13, e0204222.	2.5	19
7	Exaptation as a Mechanism for Functional Reinforcement of an Animal Pheromone System. Current Biology, 2018, 28, 2955-2960.e5.	3.9	9
8	Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins, 2018, 10, 108.	3.4	19
9	Nanobodies targeting conserved epitopes on the major outer membrane protein of Campylobacter as potential tools for control of Campylobacter colonization. Veterinary Research, 2017, 48, 86.	3.0	18
10	Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Nucleic Acids Research, 2017, 45, 2937-2950.	14.5	29
11	Duality of & Duality of warp; beta; glucan microparticles: antigen carrier and immunostimulants. International Journal of Nanomedicine, $2016,11,2463.$	6.7	25
12	An intrinsically disordered entropic switch determines allostery in Phd–Doc regulation. Nature Chemical Biology, 2016, 12, 490-496.	8.0	35
13	Inflammation-Induced Adhesin-Receptor Interaction Provides a Fitness Advantage to Uropathogenic E.Âcoli during Chronic Infection. Cell Host and Microbe, 2016, 20, 482-492.	11.0	53
14	Substrate Recognition and Activity Regulation of the Escherichia coli mRNA Endonuclease MazF. Journal of Biological Chemistry, 2016, 291, 10950-10960.	3.4	44
15	A unique hetero-hexadecameric architecture displayed by the Escherichia coli O157 PaaA2–ParE2 antitoxin–toxin complex. Journal of Molecular Biology, 2016, 428, 1589-1603.	4.2	41
16	Enterotoxigenic Escherichia coli strains are highly prevalent in Ugandan piggeries but disease outbreaks are masked by antibiotic prophylaxis. Tropical Animal Health and Production, 2015, 47, 117-122.	1.4	13
17	Structural and Functional Insight into the Carbohydrate Receptor Binding of F4 Fimbriae-producing Enterotoxigenic Escherichia coli. Journal of Biological Chemistry, 2015, 290, 8409-8419.	3.4	26
18	Side-by-side secretion of Late Palaeozoic diverged courtship pheromones in an aquatic salamander. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142960.	2.6	19

#	Article	IF	CITATIONS
19	Structural and adhesive properties of the long polar fimbriae protein LpfD from adherent-invasiveEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1615-1626.	2.5	8
20	\hat{l}^2 -glucan microparticles targeted to epithelial APN as oral antigen delivery system. Journal of Controlled Release, 2015, 220, 149-159.	9.9	40
21	Comparison of Biofilm Formation between Major Clonal Lineages of Methicillin Resistant Staphylococcus aureus. PLoS ONE, 2014, 9, e104561.	2.5	43
22	The Intrinsically Disordered Domain of the Antitoxin Phd Chaperones the Toxin Doc against Irreversible Inactivation and Misfolding. Journal of Biological Chemistry, 2014, 289, 34013-34023.	3.4	10
23	Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics. Nucleic Acids Research, 2014, 42, 6709-6725.	14.5	33
24	A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Veterinary Microbiology, 2014, 171, 470-479.	1.9	41
25	Hurdles in bacteriophage therapy: Deconstructing the parameters. Veterinary Microbiology, 2014, 171, 460-469.	1.9	38
26	The Molecular Mechanism of Shiga Toxin Stx2e Neutralization by a Single-domain Antibody Targeting the Cell Receptor-binding Domain. Journal of Biological Chemistry, 2014, 289, 25374-25381.	3.4	26
27	Nanobody Mediated Inhibition of Attachment of F18 Fimbriae Expressing Escherichia coli. PLoS ONE, 2014, 9, e114691.	2.5	23
28	Cloning, expression, and purification of the N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae in Pichia pastoris. Protein Expression and Purification, 2013, 88, 114-119.	1.3	2
29	Orally fed seeds producing designer IgAs protect weaned piglets against enterotoxigenic <i>Escherichia coli</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11809-11814.	7.1	114
30	Surface display of the receptor-binding domain of the F17a-G fimbrial adhesin through the autotransporter AIDA-I leads to permeability of bacterial cells. Microbiology (United Kingdom), 2009, 155, 468-476.	1.8	20
31	Combining sites of bacterial fimbriae. Current Opinion in Structural Biology, 2007, 17, 506-512.	5.7	45
32	The fimbrial adhesin F17â€G of enterotoxigenic <i>Escherichia coli</i> has an immunoglobulinâ€like lectin domain that binds <i>N</i> a€acetylglucosamine. Molecular Microbiology, 2003, 49, 705-715.	2.5	89
33	The Shiga-toxin VT2-encoding bacteriophage i-297 integrates at a distinct position in the Escherichia coli genome. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1579, 196-202.	2.4	17