
Marguerite Hatch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/796355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. American Journal of Physiology - Renal Physiology, 2006, 290, G719-G728.	3.4	142
2	Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with <i>Oxalobacter</i> . American Journal of Physiology - Renal Physiology, 2011, 300, G461-G469.	3.4	127
3	Intestinal transport of an obdurate anion: oxalate. Urological Research, 2005, 33, 1-16.	1.5	99
4	The Roles and Mechanisms of Intestinal Oxalate Transport in Oxalate Homeostasis. Seminars in Nephrology, 2008, 28, 143-151.	1.6	71
5	The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis, 2017, 45, 89-108.	2.0	68
6	A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis, 2013, 41, 379-384.	2.0	64
7	Enhanced Enteric Excretion of Urate in Rats with Chronic Renal Failure. Clinical Science, 1994, 86, 511-516.	4.3	62
8	Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. American Journal of Physiology - Renal Physiology, 2005, 289, F536-F543.	2.7	57
9	Transcellular oxalate and Cl ^{â^'} absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. American Journal of Physiology - Renal Physiology, 2013, 305, G520-G527.	3.4	56
10	Kidney stone incidence and metabolic urinary changes after modern bariatric surgery: review of clinical studies, experimental models, and prevention strategies. Surgery for Obesity and Related Diseases, 2014, 10, 734-742.	1.2	53
11	Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. American Journal of Physiology - Cell Physiology, 1998, 275, C748-C757.	4.6	51
12	Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Archiv European Journal of Physiology, 1994, 426, 101-109.	2.8	50
13	Gut microbiota and oxalate homeostasis. Annals of Translational Medicine, 2017, 5, 36-36.	1.7	48
14	Renal and Intestinal Handling of Oxalate following Oxalate Loading in Rats. American Journal of Nephrology, 2003, 23, 18-26.	3.1	43
15	Oxalate transport across the isolated rat colon. A re-examination. Biochimica Et Biophysica Acta - Biomembranes, 1980, 600, 838-843.	2.6	42
16	Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis, 2015, 43, 107-117.	2.0	41
17	Steatorrhea and Hyperoxaluria Occur after Gastric Bypass Surgery in Obese Rats Regardless of Dietary Fat or Oxalate. Journal of Urology, 2013, 190, 1102-1109.	0.4	40
18	Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflugers Archiv European Journal of Physiology, 1993, 423, 206-212.	2.8	36

MARGUERITE HATCH

#	Article	IF	CITATIONS
19	Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS ONE, 2019, 14, e0222393.	2.5	36
20	Oxalate status in stone-formers. Urological Research, 1993, 21, 55-59.	1.5	33
21	Parsing apical oxalate exchange in Caco-2BBe1 monolayers: siRNA knockdown of SLC26A6 reveals the role and properties of PAT-1. American Journal of Physiology - Renal Physiology, 2009, 297, G918-G929.	3.4	32
22	Forty Years of Oxalobacter formigenes, a Gutsy Oxalate-Degrading Specialist. Applied and Environmental Microbiology, 2021, 87, e0054421.	3.1	32
23	Lipid peroxidation is not the underlying cause of renal injury in hyperoxaluric rats. Kidney International, 2005, 68, 2629-2638.	5.2	29
24	Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urological Research, 2003, 31, 426-432.	1.5	24
25	Oxalobacter formigenes colonization normalizes oxalate excretion in a gastric bypass model of hyperoxaluria. Surgery for Obesity and Related Diseases, 2017, 13, 1152-1157.	1.2	24
26	Local upregulation of colonic angiotensin II receptors enhances potassium excretion in chronic renal failure. American Journal of Physiology - Renal Physiology, 1998, 274, F275-F282.	2.7	22
27	Serum oxalate in human beings and rats as determined with the use of ion chromatography. Translational Research, 2004, 144, 45-52.	2.3	22
28	Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. American Journal of Physiology - Renal Physiology, 2013, 305, G172-G184.	3.4	21
29	Increased colonic sodium absorption in rats with chronic renal failure is partially mediated by AT ₁ receptor agonism. American Journal of Physiology - Renal Physiology, 2008, 295, G348-G356.	3.4	20
30	Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS. Analytical and Bioanalytical Chemistry, 2019, 411, 4807-4818.	3.7	20
31	Spectrophotometric determination of oxalate in whole blood. Clinica Chimica Acta, 1990, 193, 199-202.	1.1	18
32	Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Experimental Physiology, 2014, 99, 1163-1167.	2.0	17
33	Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis. American Journal of Physiology - Renal Physiology, 2017, 313, G166-G179.	3.4	17
34	Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. American Journal of Physiology - Renal Physiology, 2019, 316, G82-G94.	3.4	16
35	Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6. Urolithiasis, 2020, 48, 1-8.	2.0	12
36	Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat. Urolithiasis, 2015, 43, 489-499.	2.0	11

MARGUERITE HATCH

#	Article	IF	CITATIONS
37	The mechanistic basis of hyperoxaluria following gastric bypass in obese rats. Urolithiasis, 2016, 44, 221-230.	2.0	11
38	Extracellular Vesicle Analysis by Paper Spray Ionization Mass Spectrometry. Metabolites, 2021, 11, 308.	2.9	9
39	Enteric oxalate secretion is not directly mediated by the human CFTR chloride channel. Urological Research, 2008, 36, 127-131.	1.5	8
40	Hyperoxaluric rats do not exhibit alterations in renal expression patterns of Slc26a1 (SAT1) mRNA or protein. Urological Research, 2012, 40, 647-654.	1.5	7
41	Effects of acid-base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine inÂvitro. Physiological Reports, 2015, 3, e12282.	1.7	7
42	Oxalobacter formigenes produces metabolites and lipids undetectable in oxalotrophic Bifidobacterium animalis. Metabolomics, 2020, 16, 122.	3.0	7
43	The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Archiv European Journal of Physiology, 2021, 473, 95-106.	2.8	7
44	Metabolomic Alteration in the Mouse Distal Colonic Mucosa after Oral Gavage with Oxalobacter formigenes. Metabolites, 2020, 10, 405.	2.9	6
45	Muscarinic down-regulation of cAMP-stimulated potassium ion secretion by rabbit distal colon. Pflugers Archiv European Journal of Physiology, 2000, 440, 243-252.	2.8	5
46	Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid–base homeostasis. Urolithiasis, 2019, 47, 243-254.	2.0	5
47	¹²⁵ Iodide as a surrogate tracer for epithelial chloride transport by the mouse large intestine <i>in vitro</i> . Experimental Physiology, 2019, 104, 334-344.	2.0	5
48	Genome Sequence of Oxalobacter formigenes Strain OXCC13. Genome Announcements, 2017, 5, .	0.8	4
49	Genome Sequence of Oxalobacter formigenes Strain HC-1. Genome Announcements, 2017, 5, .	0.8	3
50	The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP. Physiological Reports, 2021, 9, e14828.	1.7	3
51	Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. , 2021, 12, 2835-2875.		3
52	125 Iodide as a Surrogate for 36 Chloride in Tracing Transepithelial Intestinal Chloride Transport. FASEB Journal, 2019, 33, 575.13.	0.5	0
53	Title is missing!. , 2019, 14, e0222393.		0
54	Title is missing!. , 2019, 14, e0222393.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2019, 14, e0222393.		0
56	Title is missing!. , 2019, 14, e0222393.		0