Nadr Jomha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7963243/publications.pdf

Version: 2024-02-01

	279487	315357
1,622	23	38
citations	h-index	g-index
60	60	1000
69	69	1899
docs citations	times ranked	citing authors
	1,622 citations 69 docs citations	1,622 23 citations h-index 69 69

#	Article	IF	CITATIONS
1	Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. Journal of Orthopaedic Research, 2022, 40, 495-503.	1.2	4
2	Polycarbonate-urethane coating can significantly improve talus implant contact characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104936.	1.5	3
3	The evaluation of artificial talus implant on ankle joint contact characteristics: a finite element study based on four subjects. Medical and Biological Engineering and Computing, 2022, 60, 1139-1158.	1.6	7
4	Evaluation of the permeation kinetics of formamide in porcine articular cartilage. Cryobiology, 2022, 107, 57-63.	0.3	3
5	Vitrification of Intact Porcine Femoral Condyle Allografts Using an Optimized Approach. Cartilage, 2021, 13, 1688S-1699S.	1.4	6
6	Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Engineering - Part A, 2021, 27, 914-928.	1.6	15
7	The effect of cryoprotectant vehicle solution on cartilage cell viability following vitrification. Cell and Tissue Banking, 2021, , 1.	0.5	3
8	Collagen-Induced Temporomandibular Joint Arthritis Juvenile Rat Animal Model. Tissue Engineering - Part C: Methods, 2021, 27, 115-123.	1.1	4
9	Engineered human meniscus' matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions. PLoS ONE, 2021, 16, e0248292.	1.1	7
10	Vitrification of particulated articular cartilage via calculated protocols. Npj Regenerative Medicine, 2021, 6, 15.	2.5	14
11	Clinical Use of Talar Prostheses. JBJS Reviews, 2021, 9, .	0.8	2
12	Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 703038.	1.8	3
13	A featureâ€based statistical shape model for geometric analysis of the human talus and development of universal talar prostheses. Journal of Anatomy, 2021, , .	0.9	3
14	Mechano-Hypoxia Conditioning of Engineered Human Meniscus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 739438.	2.0	12
15	Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. Journal of Tissue Engineering, 2021, 12, 204173142199084.	2.3	12
16	Effectiveness of Clinical-Grade Chondroitin Sulfate and Ascorbic Acid in Mitigating Cryoprotectant Toxicity in Porcine Articular Cartilage. Biopreservation and Biobanking, 2021, , .	0.5	3
17	Osmometric Measurements of Cryoprotective Agent Permeation into Tissues. Methods in Molecular Biology, 2021, 2180, 303-315.	0.4	0
18	Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage. Cryobiology, 2020, 92, 151-160.	0.3	14

#	Article	IF	Citations
19	Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology, 2020, 96, $1-11$.	0.3	31
20	Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology, 2020, 96, 114-121.	0.3	10
21	Investigation of the Average Shape and Principal Variations of the Human Talus Bone Using Statistic Shape Model. Frontiers in Bioengineering and Biotechnology, 2020, 8, 656.	2.0	13
22	Using engineering models to shorten cryoprotectant loading time for the vitrification of articular cartilage. Cryobiology, 2020, 92, 180-188.	0.3	15
23	Analysis of congruence for talar dome geometry among tali of different sizes. Foot, 2019, 41, 51-58.	0.4	0
24	Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes. Cryobiology, 2019, 88, 98-105.	0.3	14
25	Development and Implantation of a Universal Talar Prosthesis. Frontiers in Surgery, 2019, 6, 63.	0.6	9
26	Hypoxia and TGF- \hat{l}^2 3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Engineering - Part A, 2019, 25, 446-456.	1.6	14
27	Analysis of a generic talar prosthetic with a biological talus: A cadaver study. Journal of Orthopaedics, 2018, 15, 230-235.	0.6	6
28	Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Engineering - Part A, 2018, 24, 761-774.	1.6	28
29	Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomaterialia, 2018, 80, 131-143.	4.1	47
30	Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue. Cryobiology, 2017, 74, 50-60.	0.3	7
31	Geometric analysis of the talus and development of a generic talar prosthetic. Foot and Ankle Surgery, 2017, 23, 89-94.	0.8	19
32	The effect of additive compounds on glycerol-induced damage to human chondrocytes. Cryobiology, 2017, 75, 68-74.	0.3	11
33	Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Scientific Reports, 2017, 7, 12148.	1.6	33
34	Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting, 2017, 8, 1-7.	2.9	80
35	Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. Npj Microgravity, 2017, 3, 28.	1.9	18
36	Intra-operator and inter-operator reliability, and CT scan repeatability in 3D modelling of talus bone using CT imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2017, , 1-8.	1.3	0

#	Article	IF	CITATIONS
37	Anatomical study: comparing the human, sheep and pig knee meniscus. Journal of Experimental Orthopaedics, 2016, 3, 35.	0.8	48
38	Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol. Cryobiology, 2016, 73, 80-92.	0.3	21
39	Optimal Seeding Densities for <i>In Vitro</i> Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold. Tissue Engineering - Part C: Methods, 2016, 22, 208-220.	1.1	28
40	Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Research and Therapy, 2015, 6, 84.	2.4	75
41	Intra-articular peroneal nerve incarceration following multi-ligament knee injury. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 3044-3048.	2.3	4
42	Meniscus repair using mesenchymal stem cells – a comprehensive review. Stem Cell Research and Therapy, 2015, 6, 86.	2.4	73
43	Porous Scaffold Seeding and Chondrogenic Differentiation of BMSC-seeded Scaffolds. Bio-protocol, 2015, 5, .	0.2	4
44	Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Research and Therapy, 2014, 16, 432.	1.6	159
45	Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 965-973.	1.3	32
46	Effect of interleukin- $1\hat{1}^2$ treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells. BMC Musculoskeletal Disorders, 2013, 14, 216.	0.8	12
47	Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology, 2013, 66, 121-125.	0.3	10
48	Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskeletal Disorders, 2013, 14, 353.	0.8	27
49	Cryopreservation of articular cartilage. Cryobiology, 2013, 66, 201-209.	0.3	60
50	Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Research and Therapy, 2012, 14, R153.	1.6	24
51	Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research and Therapy, 2012, 3, 9.	2.4	169
52	Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes. PLoS ONE, 2012, 7, e39339.	1.1	24
53	Vitrification of intact human articular cartilage. Biomaterials, 2012, 33, 6061-6068.	5.7	66
54	Immunohistochemical characterization of reparative tissue present in human osteoarthritic tissue. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 561-569.	1.4	16

#	Article	IF	CITATIONS
55	Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell and Tissue Research, 2010, 339, 421-427.	1.5	25
56	Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions. Cryobiology, 2010, 61, 123-127.	0.3	23
57	Cryoprotectant agent toxicity in porcine articular chondrocytes. Cryobiology, 2010, 61, 297-302.	0.3	43
58	Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology, 2009, 58, 110-114.	0.3	41
59	A Biomechanical Triphasic Approach to the Transport of Nondilute Solutions in Articular Cartilage. Biophysical Journal, 2009, 97, 3054-3064.	0.2	40
60	A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology, 2007, 54, 196-203.	0.3	34
61	Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell and Tissue Banking, 2007, 8, 125-133.	0.5	66
62	Evaluation of chondrocyte survival in situ using WST-1 and membrane integrity stains. Cell and Tissue Banking, 2007, 8, 179-186.	0.5	13