
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7963243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research and Therapy, 2012, 3, 9.	5.5	169
2	Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Research and Therapy, 2014, 16, 432.	3.5	159
3	Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting, 2017, 8, 1-7.	5.8	80
4	Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Research and Therapy, 2015, 6, 84.	5.5	75
5	Meniscus repair using mesenchymal stem cells – a comprehensive review. Stem Cell Research and Therapy, 2015, 6, 86.	5.5	73
6	Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell and Tissue Banking, 2007, 8, 125-133.	1.1	66
7	Vitrification of intact human articular cartilage. Biomaterials, 2012, 33, 6061-6068.	11.4	66
8	Cryopreservation of articular cartilage. Cryobiology, 2013, 66, 201-209.	0.7	60
9	Anatomical study: comparing the human, sheep and pig knee meniscus. Journal of Experimental Orthopaedics, 2016, 3, 35.	1.8	48
10	Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomaterialia, 2018, 80, 131-143.	8.3	47
11	Cryoprotectant agent toxicity in porcine articular chondrocytes. Cryobiology, 2010, 61, 297-302.	0.7	43
12	Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology, 2009, 58, 110-114.	0.7	41
13	A Biomechanical Triphasic Approach to the Transport of Nondilute Solutions in Articular Cartilage. Biophysical Journal, 2009, 97, 3054-3064.	0.5	40
14	A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology, 2007, 54, 196-203.	0.7	34
15	Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Scientific Reports, 2017, 7, 12148.	3.3	33
16	Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 965-973.	2.7	32
17	Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology, 2020, 96, 1-11.	0.7	31
18	Optimal Seeding Densities for <i>In Vitro</i> Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold. Tissue Engineering - Part C: Methods, 2016, 22, 208-220.	2.1	28

#	Article	IF	CITATIONS
19	Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Tissue Engineering - Part A, 2018, 24, 761-774.	3.1	28
20	Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskeletal Disorders, 2013, 14, 353.	1.9	27
21	Effects of introducing cultured human chondrocytes into a human articular cartilage explant model. Cell and Tissue Research, 2010, 339, 421-427.	2.9	25
22	Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Research and Therapy, 2012, 14, R153.	3.5	24
23	Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes. PLoS ONE, 2012, 7, e39339.	2.5	24
24	Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions. Cryobiology, 2010, 61, 123-127.	0.7	23
25	Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol. Cryobiology, 2016, 73, 80-92.	0.7	21
26	Geometric analysis of the talus and development of a generic talar prosthetic. Foot and Ankle Surgery, 2017, 23, 89-94.	1.7	19
27	Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. Npj Microgravity, 2017, 3, 28.	3.7	18
28	Immunohistochemical characterization of reparative tissue present in human osteoarthritic tissue. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 561-569.	2.8	16
29	Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Engineering - Part A, 2021, 27, 914-928.	3.1	15
30	Using engineering models to shorten cryoprotectant loading time for the vitrification of articular cartilage. Cryobiology, 2020, 92, 180-188.	0.7	15
31	Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes. Cryobiology, 2019, 88, 98-105.	0.7	14
32	Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Engineering - Part A, 2019, 25, 446-456.	3.1	14
33	Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage. Cryobiology, 2020, 92, 151-160.	0.7	14
34	Vitrification of particulated articular cartilage via calculated protocols. Npj Regenerative Medicine, 2021, 6, 15.	5.2	14
35	Evaluation of chondrocyte survival in situ using WST-1 and membrane integrity stains. Cell and Tissue Banking, 2007, 8, 179-186.	1.1	13
36	Investigation of the Average Shape and Principal Variations of the Human Talus Bone Using Statistic Shape Model. Frontiers in Bioengineering and Biotechnology, 2020, 8, 656.	4.1	13

#	Article	IF	CITATIONS
37	Effect of interleukin-1β treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells. BMC Musculoskeletal Disorders, 2013, 14, 216.	1.9	12
38	Mechano-Hypoxia Conditioning of Engineered Human Meniscus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 739438.	4.1	12
39	Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. Journal of Tissue Engineering, 2021, 12, 204173142199084.	5.5	12
40	The effect of additive compounds on glycerol-induced damage to human chondrocytes. Cryobiology, 2017, 75, 68-74.	0.7	11
41	Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology, 2013, 66, 121-125.	0.7	10
42	Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology, 2020, 96, 114-121.	0.7	10
43	Development and Implantation of a Universal Talar Prosthesis. Frontiers in Surgery, 2019, 6, 63.	1.4	9
44	Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue. Cryobiology, 2017, 74, 50-60.	0.7	7
45	Engineered human meniscus' matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions. PLoS ONE, 2021, 16, e0248292.	2.5	7
46	The evaluation of artificial talus implant on ankle joint contact characteristics: a finite element study based on four subjects. Medical and Biological Engineering and Computing, 2022, 60, 1139-1158.	2.8	7
47	Analysis of a generic talar prosthetic with a biological talus: A cadaver study. Journal of Orthopaedics, 2018, 15, 230-235.	1.3	6
48	Vitrification of Intact Porcine Femoral Condyle Allografts Using an Optimized Approach. Cartilage, 2021, 13, 1688S-1699S.	2.7	6
49	Intra-articular peroneal nerve incarceration following multi-ligament knee injury. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 3044-3048.	4.2	4
50	Collagen-Induced Temporomandibular Joint Arthritis Juvenile Rat Animal Model. Tissue Engineering - Part C: Methods, 2021, 27, 115-123.	2.1	4
51	Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. Journal of Orthopaedic Research, 2022, 40, 495-503.	2.3	4
52	Porous Scaffold Seeding and Chondrogenic Differentiation of BMSC-seeded Scaffolds. Bio-protocol, 2015, 5, .	0.4	4
53	The effect of cryoprotectant vehicle solution on cartilage cell viability following vitrification. Cell and Tissue Banking, 2021, , 1.	1.1	3
54	Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 703038.	3.7	3

#	Article	IF	CITATIONS
55	A featureâ€based statistical shape model for geometric analysis of the human talus and development of universal talar prostheses. Journal of Anatomy, 2021, , .	1.5	3
56	Effectiveness of Clinical-Grade Chondroitin Sulfate and Ascorbic Acid in Mitigating Cryoprotectant Toxicity in Porcine Articular Cartilage. Biopreservation and Biobanking, 2021, , .	1.0	3
57	Polycarbonate-urethane coating can significantly improve talus implant contact characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104936.	3.1	3
58	Evaluation of the permeation kinetics of formamide in porcine articular cartilage. Cryobiology, 2022, 107, 57-63.	0.7	3
59	Clinical Use of Talar Prostheses. JBJS Reviews, 2021, 9, .	2.0	2
60	Intra-operator and inter-operator reliability, and CT scan repeatability in 3D modelling of talus bone using CT imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2017, , 1-8.	1.9	0
61	Analysis of congruence for talar dome geometry among tali of different sizes. Foot, 2019, 41, 51-58.	1.1	Ο
62	Osmometric Measurements of Cryoprotective Agent Permeation into Tissues. Methods in Molecular Biology, 2021, 2180, 303-315.	0.9	0