Radomir BaÅ,azy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962991/publications.pdf Version: 2024-02-01

<u>Ρληοιμίο Βλά λ7ν</u>

#	Article	IF	CITATIONS
1	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	12.6	864
2	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	27.8	371
3	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	7.1	140
4	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
5	Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. European Journal of Remote Sensing, 2016, 49, 599-621.	3.5	50
6	Modelling top height growth and site index using repeated laser scanning data. Forest Ecology and Management, 2017, 406, 307-317.	3.2	46
7	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44
8	Potential use of hyperspectral data to classify forest tree species. New Zealand Journal of Forestry Science, 2018, 48, .	0.8	29
9	Forest dieback processes in the Central European Mountains in the context of terrain topography and selected stand attributes. Forest Ecology and Management, 2019, 435, 106-119.	3.2	16
10	Modeling the Effect of Environmental and Topographic Variables Affecting the Height Increment of Norway Spruce Stands in Mountainous Conditions with the Use of LiDAR Data. Remote Sensing, 2019, 11, 2407.	4.0	15
11	The Role of Topography in the Distribution and Intensity of Damage Caused by Deer in Polish Mountain Forests. PLoS ONE, 2016, 11, e0165967.	2.5	9
12	Does winter supplementary feeding affect deer damage in a forest ecosystem? A field test in areas with different levels of deer pressure. Pest Management Science, 2019, 75, 893-899.	3.4	9
13	Factors Affecting the Health Condition of Spruce Forests in Central European Mountains-Study Based on MultitemporalRapidEye Satellite Images. Forests, 2019, 10, 943.	2.1	9
14	Deforestation Processes in the Polish Mountains in the Context of Terrain Topography. Forests, 2019, 10, 1027.	2.1	7
15	Sensitivity of vegetation indices in relation to parameters of Norway spruce stands. Folia Forestalia Polonica, Series A, 2017, 59, 85-98.	0.3	7
16	Forest dieback process in the Polish mountains in the past and nowadays – literature review on selected topics. Folia Forestalia Polonica, Series A, 2020, 62, 184-198.	0.3	5
17	Weather-sensitive height growth modelling of Norway spruce using repeated airborne laser scanning data. Agricultural and Forest Meteorology, 2021, 308-309, 108568.	4.8	3
18	Risk model of tree stand damage by winds and its evaluation based on damage caused by cyclone "Xaver― Forest Systems, 2018, 27, e014.	0.3	2

#	Article	IF	CITATIONS
19	"Laser Discoverers―– Webâ€based Userâ€generated Content in Heritage Detection in Poland. Transactior in GIS, 2017, 21, 300-316.	^{າຣ} 2.3	0
20	Cover Image, Volume 75, Issue 3. Pest Management Science, 2019, 75, .	3.4	0