Andrew R Bassett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a targetâ€specific manner. New Phytologist, 2022, 235, 2285-2299.	3.5	7
2	Robust temporal map of human in vitro myelopoiesis using single-cell genomics. Nature Communications, 2022, 13, .	5.8	13
3	Generation of Nonmosaic, Two-Pore Channel 2 Biallelic Knockout Pigs in One Generation by CRISPR-Cas9 Microinjection Before Oocyte Insemination. CRISPR Journal, 2021, 4, 132-146.	1.4	12
4	Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 2092.	1.8	10
5	INSIGHT: A population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Science Advances, 2021, 7, .	4.7	54
6	Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nature Genetics, 2021, 53, 392-402.	9.4	258
7	Unraveling the Developmental Roadmap toward Human Brown Adipose Tissue. Stem Cell Reports, 2021, 16, 641-655.	2.3	10
8	The RAD51 recombinase protects mitotic chromatin in human cells. Nature Communications, 2021, 12, 5380.	5.8	24
9	Variation on a theme: mapping microglial heterogeneity. Trends in Genetics, 2021, 37, 1050-1052.	2.9	0
10	The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cellular and Molecular Life Sciences, 2021, 78, 3503-3524.	2.4	23
11	The impact of viral mutations on recognition by SARS-CoV-2 specific TÂcells. IScience, 2021, 24, 103353.	1.9	57
12	Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.	6.0	111
13	Single-Cell Transcriptomics of Parkinson's Disease Human InÂVitro Models Reveals Dopamine Neuron-Specific Stress Responses. Cell Reports, 2020, 33, 108263.	2.9	79
14	Screening for functional transcriptional and splicing regulatory variants with GenIE. Nucleic Acids Research, 2020, 48, e131-e131.	6.5	8
15	Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nature Communications, 2019, 10, 1817.	5.8	88
16	Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes. Methods in Molecular Biology, 2019, 1961, 153-183.	0.4	36
17	A causal role for TRESK loss of function in migraine mechanisms. Brain, 2019, 142, 3852-3867.	3.7	49
18	The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genetics, 2019, 15, e1008501.	1.5	52

ANDREW R BASSETT

#	Article	IF	CITATIONS
19	GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Science Signaling, 2019, 12, .	1.6	58
20	Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology, 2019, 37, 64-72.	9.4	359
21	Generation of gene-corrected human induced pluripotent stem cell lines derived from retinitis pigmentosa patient with Ser331Cysfs*5 mutation in MERTK. Stem Cell Research, 2019, 34, 101341.	0.3	10
22	The epilepsy-associated protein TBC1D24 is required for normal development, survival and vesicle trafficking in mammalian neurons. Human Molecular Genetics, 2019, 28, 584-597.	1.4	35
23	Quantifying the contribution of recessive coding variation to developmental disorders. Science, 2018, 362, 1161-1164.	6.0	158
24	Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Molecular Biology and Evolution, 2017, 34, 2285-2306.	3.5	97
25	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	1.0	72
26	Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons. Human Molecular Genetics, 2017, 26, 4441-4450.	1.4	119
27	In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering. Nature Communications, 2017, 8, 2109.	5.8	11
28	PLCζ is the physiological trigger of the Ca2+ oscillations that induce embryogenesis in mammals but offspring can be conceived in its absence. Development (Cambridge), 2017, 144, 2914-2924.	1.2	95
29	Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nature Communications, 2016, 7, 13661.	5.8	207
30	Most microRNAs in the single-cell alga <i>Chlamydomonas reinhardtii</i> are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs. Genome Research, 2016, 26, 519-529.	2.4	44
31	A Genome-Wide CRISPR Library for High-Throughput Genetic Screening in Drosophila Cells. Journal of Genetics and Genomics, 2015, 42, 301-309.	1.7	52
32	Understanding functional miRNA–target interactions in vivo by site-specific genome engineering. Nature Communications, 2014, 5, 4640.	5.8	86
33	Mutagenesis and homologous recombination in <i>Drosophila</i> cell lines using CRISPR/Cas9. Biology Open, 2014, 3, 42-49.	0.6	108
34	CRISPR/Cas9 mediated genome engineering in Drosophila. Methods, 2014, 69, 128-136.	1.9	115
35	CRISPR/Cas9 and Genome Editing in Drosophila. Journal of Genetics and Genomics, 2014, 41, 7-19.	1.7	174
36	Considerations when investigating IncRNA function in vivo. ELife, 2014, 3, e03058.	2.8	309

ANDREW R BASSETT

#	Article	IF	CITATIONS
37	Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System. Cell Reports, 2013, 4, 220-228.	2.9	792
38	Identification and Properties of 1,119 Candidate LincRNA Loci in the Drosophila melanogaster Genome. Genome Biology and Evolution, 2012, 4, 427-442.	1.1	217
39	Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO Journal, 2012, 31, 257-266.	3.5	204
40	Mobile 24 nt Small RNAs Direct Transcriptional Gene Silencing in the Root Meristems of Arabidopsis thaliana. Current Biology, 2011, 21, 1678-1683.	1.8	133
41	<i>Drosophila</i> Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD. Molecular and Cellular Biology, 2010, 30, 5234-5244.	1.1	43
42	Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells. Science, 2010, 328, 872-875.	6.0	668
43	Highly specific gene silencing by artificial microRNAs in the unicellular alga <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2009, 58, 165-174.	2.8	317
44	The folding and unfolding of eukaryotic chromatin. Current Opinion in Genetics and Development, 2009, 19, 159-165.	1.5	77
45	Deubiquitylating Enzyme UBP64 Controls Cell Fate through Stabilization of the Transcriptional Repressor Tramtrack. Molecular and Cellular Biology, 2008, 28, 1606-1615.	1.1	17
46	The Chromatin Remodelling Factor dATRX Is Involved in Heterochromatin Formation. PLoS ONE, 2008, 3, e2099.	1.1	31
47	A variable topology for the 30â€nm chromatin fibre. EMBO Reports, 2007, 8, 1129-1134.	2.0	48
48	A Conserved Role But Different Partners for the Transcriptional Corepressor CoREST in Fly and Mammalian Nervous System Formation. Journal of Neuroscience, 2004, 24, 7186-7193.	1.7	47